NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A286 048
AT

A CONCEPTUAL APPROACHTO
OBJECT-ORIENTED DATA MODELING

by
Gerald Byron Barnes

September, 1994

Thesis Advisor: C.Thomas Wu

Approved for public release; distribution is unlimited.

-

/ 34 | DTIC QUALITY INEPT:CTID 8
Wiy
94 11 4 059

,r REPORT DOCUMENTATION PAGE Form Approved OMB No 0704

Public repornting burden tor this collection of itormation s estimated W average F hour per response andduding the tune 1o reviewan.
Instruction. searching existing data sources gathening and maintaming the data needed and completing and reviewmne the collection o
information Send comments regarding this burden estimate or any other aspect of this collection of mtormation incuding sugzestions
for reducing this burden. to Washungton headguarters Services. Directorate tor Infonnation Operations and Reports 1215 Jetterson -
highwav, Suite 1204 Arhington. VA 222024302 and to the Otlice of Management and Budget. Paperworh Keaudtion Progec:
070:4-0188) Washington DC 203563

AGENCY USE ONLY rLeave blank; 2 RIPORT DATFE 3 RFEPORT TYPE AND DATFS COVERED
“ep 1994 Master’s Thesis. Final
i
TITLE AND SUBTITLE A CONCEFPTUAL APPROACH TO OBJECT-ORIENTED SOFUNDING NUMBLE KRS

DATA MODELING
AUTHOR(S Gerald B Bames

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESNES) 8 PERFORMING OKGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey CA 93943-5000

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORING/MONITORING
AGENCY REPORT NUMBER

11 SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the otficial policy or
position of the Department of Detense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; 12b. DISTRIBUTION CODE
distribution unlimited - A

13. ABSTRACT (maximum 200 words)Object-oriented data modeling is starting to replace the relational model for many recently
emerging database applications. The complex nature of these databases preciudes mapping of their data directly into a tabular
relational structure. Current object-oriented data modeling lacks the standardization and mathematical soundness of the relational
model. This thesis addresses this problem by proposing a conceptual data model called OPERA (Object Paradigm / Entity-
Relationship Approach). OPERA incorporates the static features of the Entity-Relationship Model with the dynamic properties of
object-orientation. In addition to OPERA, an object-oriented extension to the graphical query language GORDAS (Graph-Oriented
Data Selection) is proposed. To demonstrate the effectiveness of the proposed model, we will model a United States combat systems
support database, the EWIRDB (Electronic Warfare Integrated Reprogramming Database) We map the EWIRDB from its basic
relational format to an object schema and then to an OPERA graph. Finally, this conceptual schema is mapped to a GORDAS
schema graph and queries are performed on the database. OPERA is conceptually superior to the ER Model and its object-oriented
variant, the Enhanced Entity-Relationship Model (EER) Model. We demonstrate this by representing methods as relationship types,
which the ER and EER models are incapable of. OPERA also aids in query formulation for visual query languages such as GORDAS
by providing a query graph mapping template.

14. SUBJECT TERMS Object-Oriented Data Model, Enhanced Entity-Relationship Model, Conceptual | 15. NUMBER OF PAGES
Data Model, Electronic Warfare Integrated Reprogramming Database(EWIRDB), Object Paradigm/Entity 98
elationship Approach(OPERA), Graphical Object-Oriented Data Selection(GORDAS) 16. PRICE CODE

19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF ABSTRACT
ABSTRACT UL

18. SECURITY
CLASSIFICATION OF THIS
PAGE

CLASSIFICATION OF
REPORT

Unclassified

NSN 7540-01-280-5500 Standard Form 20% (Rev 2-89)
Prescnibed by ANSI Std 234418

Uncll Unclassified

Approved for public release. distribution is uniimited

A Conceptual Approach to Object-Oriented Data Modeling

by
Twon For
. CRA&I g Gerald Byron Barnes
1Ad Lieutenant, United States Navy
o ! = B S . University of Alabama, 198)
L Submuitted in partial fulfillment
! of the requirements for the degree of
Sl Ly . es
= TR o | MASTER OF SCIENCE IN COMPUTER SCIENCE
\ Spocidl
\ from the
H NAVAL POSTGRADUATE SCHOOL
September 1994
Author:)féz"'f"' { & e

Gerald B. Barnes
Approved by: = % ' ;

C. Thoma%, Thesis Advisor

(o 02—

Crail W. Rasmussen, Second Reader

-~

\m&wf
Ted Lewis, Chairman
Department of Computer Science

ABSTRACT

Object-oriented data modeling is starting to replace the relational model for many
recently emerging database applications. The complex nature of these databases
precludes mapping of their data directly into a tabular relational structure. Current
object-oriented data modeling lack s .dardization and mathematical soundness of
the relational model. This thesis addresses th*5 problem vy proposing a conceptual data
model called OPERA (Object Paradigm / Entit>’ Relationship Approach). OPERA
incorporates the static features of the Entity-Relationship (ER) Model with the dynamic
properties of object-orientation. In addition to OPERA, an object-oricr:ted extension to
the graphical query language GORDAS (Graph-Oriented Data Selection) is proposed.

To demonstrate the effectiveness of the proposed model, we will model a United
States combat systems support database, the EWIRDB (Electronic Warfare Integrated
Reprogramming Database). We map the EWIRDB from its basic relational format to an
object schema and then to an OPERA graph. Finally, this conceptual schema is mapped
to a GORDAS schema graph and queries are performed on the database.

OPERA is conceptually superior to the ER Model and its object-oriented variant,
the Enhanced Entity-Relationship (EER) Model. We demonstrate this by representing
methods as relationship types, which the ER and EER models are incapable of. OPERA
also aids in query formulation for visual query languages such as GORDAS by providing

a query graph mapping template.

LINTRODUCTION ... e e s, 1
A . BACKGROUND e 1
B. ORGANIZATION o e 4

Il. THE ENHANCED ENTITY-RELATIONSHIP MODEL6
lil. THE OBJECT-ORIENTED DATA MODEL 15

A INTRODUCTION ..t e, 15
B.BASIC CONCEPTS e, 15
C. ANOBJECT-ORIENTED SCHEMA 21
D. CONCLUSION ... e, 26
IV. A CONCEPTUAL OBJECT-ORIENTED MODEL28
A INTRODUCTION ... e e e, 28

B. THE GRAPHICAL OBJECT-ORIENTED SCHEMA
EXPRESSIONo e 28
C. OPERA s 30
D. CONCLUSION .. e, 35
V. OBJECT-ORIENTED QUERIESciiiiu 38
A INTRODUCTION ..ot e e 38

B. OBJECT-ORIENTED PREDICATE CALCULUS (OOPC)39
C. GENERIC OBJECT MODEL (GOM) QUERIES44

1 GOMOl e — 44

2. GOMSGl ..ot e e 46
D.ORIONQUERY LANGUAGEcoiiiiiiiiiiiii e e e eveeeen, 48
B. GORDAS ... it e e e 53
F.CONCLUSION . it it it et e e e reeaaeas 60
Vi. MODELING THE EWIRDATABASEc....62
A INTRODUCTION ..ot ittt e e s eeneeeens 62
B.EWIRDB STRUCTURE ...ttt i s e 64
1.5t0rage StrUCIUMBoviiriiii i eieaeeea e eneenen rereeans 64

2. Record Formatcciininiiiiiiiii i e 64

a. Classification Record (S00)ccciiiiiiiiiiiit viiimenn 68

b. Emitter Name Record (SO1) ..ottt 68

c. Subfile Header Record (S02)coiiininin.... ceeereens 69

d. Parametric Data Record (S03)

e. Reference Data Record (S04) ... 7

f. Comments Record (S05)o, 72

C. OBJECT-ORIENTEDEWIRDB ...t i, 74

1 EMIEr L. e e 77

2. Classificationoviiiiiii e, 77

B NAM .. e e e 77

4. Subfile_Header i, 77
5.Parametric_Data ..., 78
6.Reference_Data ..., 78

7. COMMBNES . ittt e e e e —— 79

D. THE CONCEPTUALEWIRDBccoiiiiiiiiiiii i, 79
E.GORDASQUERIES ... e e, 81

F. CONCLUSION .o e e e e e e e e e, 85
Vil. CONCLUSIONS AND RECOMMENDATIONS86
LISTOF REFERENCEScciiiiiiiiiiiiitinenenesonne. 89
INITIAL DISTRIBUTION LISTciiiiiiiiiiiiiiiiiiet s caenens 91

ACKNOWLEDGMENTS

Many individuals offered assistance to me during the course of writing this thesis. |
would like to thank Professor Craig Rasmussen, who not only spent a great deal of time
reviewing this work as second reader, but also made mathematics fun instead of just
demanding. A special thanks goes out to Professor Tom Wu, who was a dedicated mentor
from start to finish and whose sense of humor was only rivaled by his intellect.

To my most trusted ally, Joyce, thank you for the last three years of support you

have given me while I pretended to toil.

I. INTRODUCTION

A. BACKGROUND

A data model is a set of concepts which may be used to describe the structure of a
database, and also a set of operations which may be performed on it (Elmasri, 1989). Up
unti! the early 1960's, the only model for storing data was the traditional file system. With
the advent of the hierarchical and network data models in the mid to late 1960's, the idea
of a separate database management system (DBMS) evolved as a set of programs which
could enable users to create and maintain a set of related data called a database.

In 1970 the relational data model was introduced, and has become a standard for
many DBMS applications. A relational DBMS stores data in a logical tabular arrangement,
and its implementation is rather straightforward, since relational tuples and file records are
conceptually the same. In addition, the relational model allowed several high-level query
languages to be developed in the 1970's, including SQL, QBE, and QUEL, which were an
improvement over the data manipulation language (DML) of the network and hierarchical
models. By 1976, a conceptual model was introduced, the Entity-Relationship (ER)
Model, which could be used to map high-level database schemas directly into a relational,
hierarchical, or network implementation schema.

Although relational database management systems (RDBMS) have generally been
adequate for traditional business applications, they have proven insufficient for others.

Multimedia, computer-aided manufacturing and design (CAD/CAM) and artificial

intelligence knowledge databases all have complex modeling and storage requirements
which the typical RDBMS cannot satisfy. The primary reason for this is that the relational
model forces segmentation of related data. That is, data which are spread out among
several relations (i.e., tables) lose their meaning as the database becomes more complex.
Thus is incompatible with advanced modeling concepts such as attribute inheritance and
aggregation found in object-oriented systems. For this reason, a new data model, the
cbject-oriented model, was developed for such applications.

Object-oriented data models are superior to the relational model in terms of their
abstraction capabilities. Unlike the relational model, data which describe a real-world
entity is consolidated in a single database object, which makes object-oriented modeling
more compatible with advanced database semantics. Unfortunately, object-oriented
modeling suffers from the fact that there is no standard through which all complex
databases may be represented.. The concept of the relation (Rosen, 1991), which is the
basis for RDBMS implerentation models, and also integral to the ER Model of Chen
(1976), has become popular as a conceptual tool for database design. What is needed for
the object-oriented data model is a similar benchmark which provides a conceptual
framework for object-oriented database design and modeling, and which is based on an
established mathematical theory.

Since Chen's original paper on the ER model was published , there have been a
number of research papers discussing extensions to the basic model. Smith (1977)

introduced the abstract concepts of aggregation and generalization. Scheuermann (1979)

showed that ER relationship types could be modeled as higher-level aggregate objects
Dos Santos (1979) denived complex data types from Chen's entity sets using mathematical
constructors. Elmasri (1989) incorporates these and other enhancements to the ER model
in an excellent discussion.

Hughes (1990) provides a good overview of object-oriented data modeling. The
graphical representation of object schemas used in this thesis is based largely on Bertino
(1993). A thorough examination of a representative object-oriented data model (ORION)
is found in Banerjee (1987). Bertino (1992) discusses the impact of the object-oriented
data model on query language design. The conceptual query language used in this thesis is
an extension of that proposed in Elmasri (1981).

A number of papers have been devoted to merging the ER and object-oriented
models. Kappei (1988), Lazimy (1989), Navathe (1988), and Gorman (1990) all propose
conceptual models which incorporate the static features of the ER model with the dynamic
ones of the object-oriented paradigm. The model developed in this thesis incorporates
ideas from these papers, but proposes a different method for representing the behavioral
aspect o1’ the object model.

There are several issues addressed by this thesis. First, a general data model for an
object-oriented database schema must be established . Given this model, an abstract device
should be developed to represent it in an understandable and meaningful way. We
accomplish this by studying whether an existing or modified conceptual data model may be

mapped to an object-oriented schema. Assuming this can be done, the utility of an

object-oriented conceptual model must be examined. To do this, we see if the model
serves a purpose or h-as some application.

The objective of this research is to extend the ER model into a high-level graphical
representation for the object-oriented model, and thereby establish a common
mathematical foundation for the design of object-oriented database management systems
(OODBMS). In this thesis, a data model is proposed for representing object-oriented
schemas as abstractions. The model is graphical in nature; as such, it is a visual aid in
understanding the semantics of an object database. Constraints are modeled in a
diagrammatic fashion instead of a procedural one, and operations are discussed from the
viewpoint of data retrieval only (queries). The example military database which is chosen
for modeling is classified; however, only those elements which are unclassified have been
used for this study. It is assumed that the reader has a basic understanding of the ER
model.

B. ORGANIZATION

This thesis is composed of seven chapters. Chapter I is an introduction containing
information on the reasons for the research and the methods for accomplishment. Chapter
II discusses the Enhanced Entity-Relationship (EER) Model as an object-oriented
extension of the ER model. Chapter III provides a general overview of object-oriented
data modeling. Chapter IV proposes a conceptual model called OPERA (Object Paradigm
/ Entity-Relationship Approach) for representing an object-oriented database schema.

Chapter V compares different query languages for the object-oriented data model and

proposes an extension to a graphical query language (GORDAS) to support object
queries. Chapter VI uses the results of Chapters II through V to map a military application
database, the Electronic Warfare Integrated Reprogramming Database, to an object
schema and then an OPERA diagram. Chapter VII concludes with a review of thesis

objectives and recommendations for further research.

II. THE ENHANCED ENTITY-RELATIONSHIP
MODEL

The Enhanced Entity-Relationship Model (Elmasri, 1989), or EER, is an extension

of the ER model which includes all of the concepts of Chen's model plus the following:

Superclass

Subclass
Specialization
Generalization
Category

Attribute Inhentance

OV h W~

The notion of abstract classification is demonstrated in the EER model in terms of
superclasses and subclasses. An entity type in the ER model is represented as a superclass
in the EER model. A particular superclass may be a subclass of another entity type (which
may be a superclass in its own right). Hence, a relationship exists between the two, called
a superclass/subclass relationship. The significance of this relationship lies in the fact that
all characteristics which describe the superclass also pertain to all of its subclasses;
however, a particular subclass may exhibit characteristics which are in addition to those of
its superclass , but also exclusive of other subclass types. To illustrate these concepts,
refer to Figure 1. This diagram represents a database containing information about a
company's employee base and how vehicles are assigned to it. Right away we notice a
significant difference from the ER model - the representation is hierarchical in nature.
Another difference is more subtle - the entity types EMPLOYEE, MANAGER, and

ENGINEERING MANAGER are now referred to as superclasses or subclasses,

ewyog Yyad [andig

[PoNIIRIL AVNAIRIL

T

,
|
| AN | FHAOTNAN | o unyin | | wmaniona | [nvioineoad || auvimioas
|

ATINOH JaR4VIvS

N\ - JNVE ‘ NOSY3d
- {P2C n?.% % Lﬂhn%u
—

ddAO0TdNY

%&&52

depending on their involvement in a specific relationship (the symbol { U} means subclass)
For example. EMPLOYEE is a superclass of MANAGER, while MANAGER is a
superclass of ENGINEERING MANAGER. In addition, PRODUCTION MANAGER
and SYSTEMS MANAGER are both subclasses of ENGINEERING MANAGER . This
dualism would be hard to represent in standard ER form. The important observation about
such a hierarchy is that all subclasses descended (i.e., derived) from the root class (in this
case, EMPLOYEE), inherit all of its characteristics. This feature is known as attribute
inheritance. Hence, a SECRETARY is described by all the EMPLOYEE attributes (SSN,
Name, Job Type, Address, Birthdate) as well as its own specific one (Typing Speed).

The inheritance paradigm is also applicable to relationships: if a superclass/subclass
is related to another superclass/subclass not in its hierarchy, that relationship is also
inherited by all its successors. To illustrate, the EMPLOYEE class participates in a
relationship named COMPANY EMPLOYEE with another class (in a separate hierarchy)
called COMPANY. This relationship, as shown in Figure 1, shows that a member of the
COMPANY class may contain one or more members of the EMPLOYEE class, but must
contain at least one. Conversely, an EMPLOYEE must belong to only one COMPANY.
Since SECRETARY, TECHNICIAN, ENGINEER, MANAGER, SALARIED
EMPLOYEE, and HOURLY EMPLOYEE are subclasses of EMPLOYEE, they all
participate in this relationship as well. An important aspect of this model is that a subclass,
even though it has an independent existence with respect to some other classes in the

hierarchy, cannot exist as a member by itself. If a class is a subclass of another class, it is

also a member of that superclass This is the subset hierarchy defimtion of
superclass/subclass relationships an entity A is a subset of entity B if every occurrence of
entity A is also an occurrence of entity B (Teory, 1986).

Specialization, as applied to the EER model, is the process of further classifying a
set of objects (i.e., a superclass) into more specialized subclasses. This specialization is
usually defined by some distinguishing characteristic of the entities which comprise the
superclass. To illustrate, in Figure 1 we have a superclass, EMPLOYEE, which contains
two specializations, one based on job type, another on method of payment. The set
{SECRETARY, TECHNICIAN, ENGINEER} contains entities which are employees but
are identified in a specialized role based on the job performed. Likewise, { SALARIED
EMPLOYEE, HOURLY EMPLOYEE} is a set of instances specialized based on their
type of income. The other subclass, MANAGER, is not a specialization, but a simple
subclass of EMPLOYEE. One interesting thing to observe about this figure is the
relationship BELONGS TO. In the ER model, this would have to be represented as a
relationship between EMPLOYEE and TRADE UNION,; this is not as expressive as the
EER depiction. In the EER model, because of specialization, we know exactly what group
of employees may belong to such an organization: those who are hourly employees, and
no others.

Generalization in the EER model is simply the inverse process of specialization,; it
is the process of grouping several classes into a higher-level abstract class that includes

objects in all these classes. Both specialization and generalization are similar; the former is

a top-down conceptual refinement and the latter is a bottom-up conceptual synthesis
Otherwise, they are equivalent

As seen in Figure 1, a class may be shared by one or more higher-level classes. Such
a class is called a shared subclass. For example, the subclass ENGINEERING
MANAGER is shared by ENGINEER, MANAGER, and SALARIED EMPLC
Each of the superclass/subclass relationships involving a shared subclass is distinct.
ENGINEER/ENGINEERING MANAGER, MANAGER/ENGINEERING MANAGER,
and SALARIED EMPLOYEE/ENGINEERING MANAGER are separate relationships,
and as such ENGINEERING MANAGER inherits the attributes (i.e.,characteristics) of its
three superclasses all the way to the root of the hierarchy (EMPLOYEE). A structure
which contains a shared subclass is called a specialization lattice; if no shared subclasses
are present, a specialization hierarchy exists.

There are some situations where a lattice is not desired, that is, instead of a shared
subclass, we need to model a relationship where one subclass is related to multiple
superclasses in a single superclass/subclass relationship. How can this be done? The
category provides the answer. In Figure 1, vehicle registration for certain company
employees is modeled by the LEASED BY and OWNS relationships. These show that
only company employees who are engineering managers may lease a registered vehicle,
which in turn belongs to some other entity. The owner of a vehicle may be a person, bank,
or a company, but does not have to be all three. To represent this relationship properly,

the category OWNER is established, which is a subclass of the union of its superclasses

10

PERSON, BANK, and COMPANY. This union of superclasses is depicted graphically by
a connecting node coﬁtaining the letter "U". The important detail to note about categories
is that they provide for selective inheritance, that is, a category only inherits attributes
from the superclass to which it is related. To illustrate, if a particular owner happens to be
a person, the attributes for BANK will not be passed along to that instance of OWNER.
This was not possible with a shared subclass, since attributes of all the superclasses for a
shared subclass are inherited. While a category is the union of its related superclasses, a
shared subclass is the intersection of its superclasses; each has their modeling applications.
As was discussed earlier, a most important component of any data model is its set
of built-in constraints. In addition to the constraints which are part of the ER model, the

EER model contains the following additional constraints on specialization/generalization:

1. Subclass Membership

2. Disjointness

3. Completeness

As seen earlier, more than one specialization may exist within a hierarchy. The

specialization structure may be refined further to specify membership in a particular
subclass. There are three categories of subclass membership constraints which accomplish
this: predicate-defined, attribute-defined, and user-defined. With predicate-defined
subclasses, membership is determined by the value of some superclass attribute. The value
of the superclass EMPLOYEE attribute Job Type is known as the defining predicate of
the subclass, since it defines whether an entity will belong to the SECRETARY,

TECHNICIAN, or ENGINEER subclasses. The defining predicate condition is a

11

constraint which is indicated graphically by placing its value along the arc leading from the
connecting node to the subclass. A second type of subclass membership constraint is the
attribute-defined constraint. This is similar to the predicate-defined constraint, except that
membership is determined by the value of the same superclass attribute for all subclasses.
This attnibute is called the defining attribute of the specialization (or generalization), and
is depicted by showing its name on the arc leading from the superclass to the connecting
node. For the schema of Figure 1, the attribute Job Type of EMPLOYEE is the defining
attribute for {SECRETARY, TECHNICIAN, ENGINEER}. A third type of subclass
membership constraint is user-defined. With user-defined membership, there is no built-in
condition which determines that an entity will belong to a subclass; the database user sets
this constraint himself. Such a constraint is specified individually for each entity entered
into the database.

In order to make the EER model complete, constraints must be specified on
membership within a specialization. In our example schema, the absence of any such
constraints might allow a member of the EMPLOYEE superclass to simultaneously exist
as botha SALARIED EMPLOYEE and HOURLY EMPLOYEE. This is not an accurate
reflection of the real world, for no employee of any company is salaried and paid on an
hourly wage scale at the same time. To resolve this dilemma, an additional constraint on
disjointness is provided. This constraint specifies whether duplicate membership is allowed
in a specialization. The disjointness constraint has two possible values, either disjoint or

overlapping. Disjointness is indicated graphically by the presence of the symbol (D)in a

12

connecting node, and overlapping subclasses are indicated by the presence of the symbol
(O). Subclasses which are overlapping within a specialization imply that the same entity
may coexist in distinct subclasses, whereas disjoint subclasses must not allow this. In
Figure 1, the ENGINEERING MANAGER superclass contains two overlapping
subclasses: PRODUCTION MANAGER and SYSTEMS MANAGER. This tells us that
an engineering manager may be in charge of systems, production, or some combination of
the two. Similarly, the EMPLOYEE superclass has a specialization with three disjoint
subclasses: SECRETARY, TECHNICIAN, and ENGINEER. This reflects the fact that
secretary, technician, and engineer are mutually exclusive job descriptions.

Finally, completeness must be specified for the model. This is an extension of the
participation constraints imposed by the ER model. The completeness constraint in the
EER model determines superclass entity participation in the superclass/subclass
relationship. Such a constraint may be total or partial. A total specialization constraint
mandates that every superclass entity be a member of some subclass, whereas partial
specialization allows an entity not to belong to any subclass. Figure 1 illustrates these
concepts. There is a total participation constraint between EMPLOYEE and the
specialization {SALARIED EMPLOYEE, HOURLY EMPLOYEE}, indicated graphically
by a double-lined arc to the connecting node (the same graphic notation as ER existence
dependency). There is also partial participation between EMPLOYEE and
{SECRETARY, TECHNICIAN, ENGINEER }. Do these constraints accurately reflect

the real world existence of database entities? Yes, because it is logical that an employee

13

may be a secretary, technician, or engineer, or possibly none of the three. It s also
apparent that a paid employee must be either given a salary or compensated by the hour
The EER model is now complete. But what is its real advantage? One view is that
the EER model enhances the database designer's ability to capture the real data
requirements accurately because it requires one to focus on greater semantic detail in the
data relationships. Also, abstraction techniques, such as generalization, provide useful
tools for integration of user views to define a global conceptual schema (Teory, 1986).
These tools are essential for complex designs such as CAD databases. Because of the
iterative nature of the (CAD) design process, designers cannot give a complete description
of the design at once; they provide a partial description, later completed by repeated
refinements. The iterative and tentative nature of the design process implies several
descriptions of the design object in the database at any time, and previous states of the

design must be available to designers working on the later states (Berzins, 1987).

14

II1. THE OBJECT-ORIENTED DATA MODEL

A. INTRODUCTION

The EER is a high-level or conceptual data model. As such, it models some aspect
of the real world in a way which is similar to a person's perception of it. At the opposite
extreme are physical data models, which describe how data is stored and arranged on
some physical medium. An implementation data model is a combination of the two; while
providing a reasonable representation for a higher-level schema, it also is not far removed
from a low-level structural model. (Elmasri, 1989)

The relational model is an implementation model, since its logical tabular
arrangement of data equates nicely to a physical record structure. Like the relational
model, the object-oriented model provides structure and meaning to a database, but goes
much further. The distinguishing feature of such a model is its ability to easily represent
the dynamic nature of a database, that is, the operations which may be performed upon it.

In this chapter we examine the basic concepts of object-orientation. Then, using
these ideas, an object-oriented schema will be designed for a real-world database. Finally,
the EER and object-oriented data models are compared.

B. BASIC CONCEPTS

The fundamental concept supporting object-oriententation is that of object. An

object represents a unique entity in the real world. It has its own identity independent of

any characteristics it may possess via an object identifier (OID). In terms of database

15

storage, an object may be differentiated from any other obi-ct by means of an OID Hence
an object does not need a unique characteristic (1.e.. ke' attribute) to uniquely identify it.
the OID is a system-defined value.

An object may have both a state and a behavior. The state of an object 1s
determined by the values of its instance variables (object properties). The behavior of an
object is provided by its methods. Methods are simply blocks of code which manipulate or
return the state of an object (Banerjee, 1987). They are implemented via encapsulation
and information hiding. A method is encapsulated when another object may access it only
through a common interface. This interface is called a message, which when sent by one
object invokes execution of a method on another. A method may return the state of its
object to another object by sending a return message. An object may also hide information
from other objects by having private methods which are innaccessible to them. A public
method may be accessed by any object.

Objects having similar properties and methods are grouped together in classes. This
concept, called classification, is an advantage both from a modeling and physical storage
viewpoint. For example, if a number of objects use the same method to return or change
their state, it would be wasteful to encode a procedure for each object. Instead, when a
method on an object is invoked, a common definition stored in a class object is used for all
objects belonging to a particular class. Similarly, class properties and class methods may

be defined which do not apply to any particular object, but to a group of objects.

16

For an object to exist, it must be created. /nstantiation is the process by which a
new object is created by sending a message to a class object. The class object «ontains one
or more methods called constructor methods specifically for this purpose. In addition to
constructor methods, other methods exist (Hughes, 1991) which return or change the

state of an object. Accessor methods return the current state of an object, whereas

Class DEPARTMENT
Properties
Department_Name : STRING
Department_Number : INTEGER
Manager ID : STRING
Division : STRING
Number_of Employees : INTEGER
Methods
public
Create () : DEPARTMENT
Locations*() : STRING
Average Salary () : FLOAT
Add_Employee () : EMPLOYEE
private
Minimum_Salary () : FLOAT
Maximum_Salary () : FLOAT

Figure 2. The Class DEPARTMENT

transformer methods change its state and return a new object (i.e., the same object with a
different state). Destructor methods are similar in form to constructor methods, but
opposite in function. That is, they remove object instances from existence.

To illustrate the above concepts, refer to the example object-oriented schema of

Figure 2. This schema models an entity in the real world of business, a company

17

department. Since company departments can be described as having a similar

representation for sta.te and behavior, they are modeled as a class DEPARTMENT. An
object belonging to this class has certain characteristics, such as a name, a manager, and a
controlling division. It also has certain behaviors, or methods. which may be accessible or
not. For example, the constructor method Create may be invoked by an appropriate user
to create a new DEPARTMENT object. The accessor method Location returns a set of
one or more objects of type STRING (for example, different city names) indicating where
the company department exists. Another accessor method, Average_Salary, computes the
mean wage paid to all employees in the department. Add Employee is a transformer
method which changes the state of the department by creating an object of class
EMPLOYEE and thereby modifying the instance variable Number_of Employees. Finally,
two private methods are used by the class object to update the minimum and maximum
salary each time a new employee is added to the department.

Another distinguishing feature of the object-oriented model is that of inheritance. It
is the most powerful concept of object-oriented programming (Bertino, 1993). Like the
concept of classification, inheritance is an effective storage and modeling technique. The
basic idea of inheritance is the superclass/subclass relationship, discussed in Chapter II.
The subclass assumes the properties and methods of its superclass (or superclasses) and
may define specific ones for itself. Suppose, for example, that the class DEPARTMENT
of Figure 2 could be logically separated into more than one type of object. Even though

these objects are similar in that they are all departments, they are functionally different in

18

certain distinguishing ways. A department might specialize in production, sales, or
marketing. A production department may have a specific requirement to maintain
information concerning total time spent in producing a product or service. Accounting

data maintained by the sales department may consist of total and average sales during a

Class PRODUCTION DEPARTMENT
Superclass
DEPARTMENT
Methods
public
Weekly_Product_Hours () : FLOAT
Weekly_Service_Hours () : FLOAT
Class SALES_DEPARTMENT
Superclass
DEPARTMENT
Methods
public
Total Weekly Sales () : FLOAT
Average Sale Price () : FLOAT
Class MARKETING_DEPARTMENT
Superclass
DEPARTMENT
Methods
public
Average_Customer_Age () : FLOAT
Customer_Males () : INTEGER
Customer_Females () : INTEGER
Married_Customers () : INTEGER

Figure 3. Specialization of DEPARTMENT
specific time interval. Marketing, on the other hand, may need to know survey information
such as average age, sex, and marital status of customers. Figure 3 illustrates how the

schema of Figure 2 may be expanded to model these refinements. This schema format,

19

derived from Hughes (1991) and Bertino (1992), defines a subclass by specifying its
superclass within the schema description. For example, SALES_DEPARTMENT is a
subclass of the superclass DEPARTMENT, inheriting the properties and methods of
DEPARTMENT while specifying two additional methods, Total Weekly Sales and
Average Sale Price, which are unique to SALES DEPARTMENT.

In addition to the basic concepts of the object-oriented model, there are other more
advanced modeling techniques which greatly enhance the expressiveness and utility of the
model. The ORION data model (Banerjee, 1987) proposes three major extensions :
composite objects, schema evolution, ana versions. A composite object is an object which
has properties whose domain consists of objects of another class; such domain objects are
called component objects. Component objects may be composite objects themselves,
leading to a composite object hierarchy. With such a hierarchy, it is possible to model
extremely complex real-world objects in a natural fashion. An excellent discussion of
issues involving composite objects may be found in Kim (1989).

Schema evolution allows for a database schema to be dynamically defined and
modified while maintaining integrity and consistency of the database. ORION achieves this
by satisfying a set of schema invariants, which are object-oriented semantic integrity
constraints. For example, any change to a database class structure must result in a directed
acyclic graph, or tree structure. This is the class lattice invariant. The full inheritance
invariant ensures that a class must inherit the instance variables and methods of its

superclasses. In addition to invariants, which maintain the integrity of a database, rules for

20

schema evolution exist which ensure that consistency is maintained. Among these are
default conflict resolution and property propagation rules, which establish how property
name clashes are resolved in multiple inheritance schemas and how properties are
propagated throughout the class hierarchy when a schema instance variable is modified.

Versions are alternate copies of the same object which are extremely important in
design databases. Through versions a history is maintained of how a specific version of an
object was created. Such version istories have significant implications in managing a
complex design project. Although beyond the scope of this thesis, Bertino (1993) provides
a good discussion of version modeling.
C. AN OBJECT-ORIENTED SCHEMA

A real-world database schema can be modeled with object-oriented concepts.
Suppose we have a database containing information describing medical services provided
by a health care facility (such as a hospital). A hospital may be divided into functional
units, or wards. A ward may specialize in a certain type of patient care, for example,
surgical, obstetric, or pediatric. Each ward has certain characteristics in common : a name,
number of employees assigned, and number of patients assigned. In addition, surgical
wards may keep track of the number of operations per day and postoperative infection
rate. Obstetric wards may need information on babies born per day, neonatal unit staffing,
and number of cesarean sections performed per day. A pediatric ward could keep a record

of average patient age and total incidence of bone fractures. With these requirements in

21

mind, it is natural to model a ward as a superclass with subclasses for each of its three
specializations.

Each ward consists of a collection of patients. The data maintained for these people
might be address, social security number, name, phone number, blood type, sex, age, and
type of illness. Thus a patient is an object in its own right, and is modeled as a class.

One or more illness types are assigned to each patient. All illnesses are identified by
a name and primary treatment (such as drug therapy or surgery). Ilinesses may either be
terminal or non-terminal. For terminal illnesses, cumulative patient deaths are recorded.
For non-terminal ones, average time for patients to recover is maintained. With this in
mind, an illness would be modeled as a superclass for curable and incurable diseases.

Finally, medical care is provided by trained hospital personnel. The medical staff
consists of doctors, nurses, and medical aides. For all medical personnel, the following
data is kept : home phone. name, sex, address, social security number, birthdate,
educational degree, workshift, and age. In addition, it is known what patients are assigned
to each staff member, who they supervise, what other staff members (if any) supervise
them, and what ward they are assigned to. Care providers who are physicians are also
identified by their annual malpractice premium and name of medical specialty (i.e.,
cardiologist, radiologist). Nurses have the additional property of licensing source (i.e., RN
or LPN). Medical aides are further described by the number of cumulative training hours

they have received in CPR, physical therapy, and patient hygiene.

22

In producing an object-oriented schema for the hospital database, we use a format
similar to that of Figures 2 and 3. To make the model more concise, the distinction
between public and private methods is not shown, and constructor/destructor methods are

not given for each class :

Class MEDICAL STAFF

Properties
Name : STRING
Address : STRING
Home_Phone : STRING
Sex : CHARACTER
SSN : STRING
Birthdate : DATE
Workshift : INTEGER
Degree : CHARACTER
Ward_Assigned : WARD
Supervisor : MEDICAL STAFF
Supervisees* : MEDICAL STAFF

Methods
Age () : INTEGER
Patients_Assigned* () : PATIENT

Class PHYSICIAN
Superclass MEDICAL _STAFF
Properties
Malpractice_Premium : FLOAT
Specialty : STRING

Class NURSE
Superclass MEDICAL _STAFF
Properties
Licensing : STRING

Class MEDICAL AIDE
Superclass MEDICAL STAFF
Properties
CPR_Hours : FLOAT
Physical_Therapy_Hours : FLOAT

23

Patient_Hygiene_Hours : FLOAT

Class WARD
Properties
Medical_Staff Assigned* : MEDICAL_STAFF
Methods
Number_of Employees () : INTEGER
Number_of Patients () : INTEGER
Patients_Assigned* () : PATIENT

Class SURGICAL_WARD
Superclass WARD
Methods
Operations_Per_Day () : INTEGER
Post_Op_Infection_Rate () : FLOAT

Class OBSTETRIC_WARD
Superclass WARD
Properties
Neonatal Unit_Capacity : INTEGER
Methods
Births_Per_Day () : INTEGER
Cesareans_Per_Day () : INTEGER

Class PEDIATRIC_WARD
Superclass WARD
Methods
Total_Bone_Fractures () : INTEGER
Average Patient_Age () : FLOAT

Class PATIENT
Properties

Name : STRING
Address : STRING
Room_Number : STRING
Home_Phone : STRING
Sex : CHARACTER
SSN : STRING
Birthdate : DATE
Blood_Type : STRING

24

Ward_Assigned : WARD
Medical_Staff Assigned* : MEDICAL _STAFF
" Illnesses* : ILLNESS

Methods
Age () : INTEGER

Class ILLNESS

Properties
Name : STRING
Primary_Treatment : STRING
Methods

Affected_Patients* () : PATIENT

Class TERMINAL ILLNESS
Superclass ILLNESS

Methods
Cumulative_Patient_Deaths () : INTEGER

Class NON-TERMINAL ILLNESS
Superclass ILLNESS
Methods
Average Recovery Time () : FLOAT

In the hospital schema, some characteristics are modeled as methods instead of

properties. This would depend on the implementation; in general, information which is

subject to frequent change may be modeled by methods for efficiency of implementation.

For example, the 4ge method is a derived attribute of classes MEDICAL _STAFF and

PATIENT. The ages of patients and employees may be directly calculated from their

birthdates, which do not change (and hence are properties). Similarly, the

Patients_Assigned method, which returns a set of objects of class PATIENT, is better

modeled as a method, since it is a dynamic characteristic. Also note that

Cumulative_Patient_Deaths, the method for subclass TERMINAL ILLNESS, and

25

Average_Recovery Time, the method for subclass NON-TERMINAL ILLNESS, are
both class methods, since they tabulate data for groups of ILLNESS objects. On the other
hand, Total Bone Fractures is an object method for PEDIATRIC_WARD, since it only
calculates data for a specific object (the pediatric ward).

D. CONCLUSION

The object-oriented model and the EER model are similar in many respects. Both
model object-oriented concepts such as inheritance, superclass/subclass relationships,
generalization, and specialization. In the EER model, an entity represents a unique
member of a superclass or subclass. The analogous construct in the object-oriented model
is the object. EER entity types have attributes; the object-oriented equivalent is the
property (i.e., instance variable).

Nevertheless, there are noticeable differences. First of all, the EER is a conceptual
model. It represents the real world in a way which is very natural to understand,
graphically showing relationships and constraints among entity types. Conversely, the
object-oriented model is an implementation model. As such, it gives more detail as to how
objects are represented in a database. That is, data types of class properties are displayed
in a schema. Uniqueness of an entity is represented by a key attribute in the EER model;
the OID performs this function for object-oriented model. In addition, there is no EER
equivalent for the composite object. The greatest difference between the two models,
however, is how database dynamics are illustrated. Whereas the object-oriented model has

methods, the EER has no such capability. Hence, the EER provides us with an excellent

26

conceptual vehicle for describing a database, while the object-oriented model allows us to

model both state and behavior. In the next chapter, we will merge these two capabilities.

27

IV. A CONCEPTUAL OBJECT-ORIENTED MODEL

A. INTRODUCTION

In the last chapter the object-oriented data model was introduced and compared to
the EER model. In this chapter, both models are combined into a high-level graphical
model called OPERA (Object Paradigm/Entity-Relationship Approach). This model is
capable of expressing database constraints, operations, and logical data relationships
between object classes. OPERA proposes to bridge the gap between the
entity-relationship and object-oriented data models by integrating the mathematical
relation and the method in a visual representation of a database. Once formulated, OPERA
will be used in the remainder of the thesis to aid in object-oriented query formulation

(Chapter V) and to model and query a complex military database (Chapter VI).

B. THE GRAPHICAL OBJECT-ORIENTED
SCHEMA EXPRESSION

Before merging the object-oriented and EER models, it is helpful to express both of
them graphically. Since the EER is already a conceptual schema, only the object-oriented
implementation model needs to be converted. This modification, called the Graphical
Object-Oriented Schema Expression (GOOSE), is a visual object-oriented schema
adapted from Bertino (1993). It makes the transformation to an OPERA diagram easier by
pictorially displaying links between classes and, unlike the Bertino mcdel, incorporates

EER constraints on superclass/subclass relationships.

28

Figure 4 shows the basic schema template. A class (or subclass) is modeled as a
rectangular block. This is similar to the EER representation. Within the block, the
properties of the class (i.e., attributes of the entity type) are modeled as in the
object-oriented implementation schema. Each property is linked to a primitive domain ,

such as INTEGER or STRING, by a colon (), or to a complex domain, such as a

SUPERCLASS
Property_1 : DOMAIN
Property_2*: DOMAIN
Property_3* >
Property 4 ————————=i-pp
Method_1() : DOMAIN
Method_2*()

—»>
Single line = Partial Subclass Participation
Double line = Total Subclass Participation

O = Overlapping
D = Disjoint

SUBCLASS _ SUBCLASS_2
Property_1 : DOMAIN Property_| =t
Method_1 () 'Method_] *() DOMAIN

Figure 4. GOOSE Template
composite object class, by an arrow (—). Properties may be single-valued or multivalued,
that is, they may return a single object or a set of objects. Single-valued and multivalued
property domains may be primitive or complex; multivalued properties are denoted by an

asterisk (*). In addition, class properties are italicized. Methods are represented in a

29

similar way , but are separated from properties by a bold line. The parenthesis following a
method name represénts its functional nature. That is, method activation is modeled as a
procedure call. As SUBCLASS _1 illustrates, a domain link may be recursive in nature. In
other words, the domain of a method (or property) may consist of objects belonging to
that method's (or property’s) class. Finally, constraints and the IS_A relationship are
modeled as in the EER.

We are now ready to model an object-oriented implementation schema in a GOOSE
diagram. The hospital database schema of Chapter III will be used for this purpose. Recall
that in this schema, .nere are four superclasses MEDICAL STAFF, WARD, PATIENT,
ILLNESS) and eight subclasses (PHYSICIAN, NURSE, MEDICAL _AIDE, SURGICAL
_WARD, OBSTETRIC_WARD, PEDIATRIC_WARD, TERMINAL _ILLNESS,
NON-TERMINAL _ILLNESS). The methods and properties can be mapped directly from
the object-oriented schema, whereas the constraints may be derived from the verbal
description of the database. The complete GOOSE schema is illustrated in Figure 5.

C. OPERA

The OPERA model is a graphical representation of the state and behavior of an
object-oriented database. Since it combines the entity-relationship and object-oriented data
models, the EER and GOOSE diagrams will be integrated into a common description. To
facilitate this, the behavioral aspect of the object-oriented approach, the method, must be

presented conceptually.

30

weidelq FSOOO aseqeie([endsoy ‘g 2Indig

AFOALNI(v?ndomim:«oawuw

()Ae
LVOTd SinoH LVOT4:()98y| | LN = ——r= LVOTd:()arey
TounBAH aned Tjudneq adeioAy LE _.b_maao 10N TERIRN “uonagyu dpisod
VO LIsinon WHOALNI()samoel @IVM DI1HLSE0 HOALNIfeq
“Adesoyl " easAyd ~ouog Te10, ~134 suonesadp
LVOTA:sIoH 4dD p— @AvVM @vm
= DONIRLLS:Aljerd - -
a1y voIqaw (SULSTRES) “opiLvIaad TVIIDUNS
ONIYLS:3uIsua01] ~aonoeidrep ()« Poudissy siuoneg
HSANN VIOISAHd YFOALNE()Swatied Jo soqumN
i()s3ohojdurg“jo3oquinN |
~ +PRUBISSYJJeIS PO
1 _ A
()upoudissy sjuoned JHOALNL()8V
| YAOALNI:()3Y +SISSAU[]
+S33s1413dng uBissy~ jeIS [ed
E% 2dng pousdissy prem LVOH (o YAOHLNI ‘()syivaq
DoV DM DNRILLS:2dAL"pooig "£434032Y a8viaay Tanng aanoimun)
WALDVAVHDB5q T EG T -
UAOAINIYYSHOA — — _ SSENT SSHAN TVNINYAL
= ONIRILS:NSS TVNIWNYEL-N
dLvd-Ph e FALIVIVHD XS
ONIULS'NSS ONILLS3u0yd” duioH
s owoud suorr| | | [RUALSSLAN w0y
. DNIULS'SSIppY -
> ONTULS SSppy e ONTHLESR < SIUAN i 333
ONIULSOWEN INALLVd DNNRLLS: wauneal]~ Areusiiq
= q —> ONIILS:weN
2AVLS TVOIdan — —
SSANTTI

31

Recall from the discussion of Chapter III that a method models a functional
capability. That is, w-hen an object sends a message to another object, a method (identified
by the message syntax) may be executed by the object receiving the message. In return,
the receiving object may send a return message, which may contain state information or
invoke a method on the sending object. In mathematical terms, this is a logical mapping

frorn one set to another. Suppose we have two sets A and B as shown in Figure 6. Set A

m,(a)

Object Set
A

Figure 6. Set Mapping with Methods
consists of n elements, and set B consists of m elements. Thatis, A= {a, ,a,, ...,) and
B={b,,b,,..,b,). Amethod may be defined as a mapping from one set (i.e., class) to
another. In the case where a method returns the state of one element (i.e., object) to
another, we may model this transformation as m(s), wherer € R and s € S, with R the set
of receiving elements and S the set of sending elements. This situation is depicted in

Figure 6 by m,(a), which represents a method executed by an object of A (in response to a

32

message from an object of B) with a return of some state information from the A object to
the B object. Similarly, B may map into A. Note also that a method may map one set into
itself. We may model this as m (S) , where s € S, and S is any set (i.e., class) which has
some method (m,) which returns elements of its containing set. In Figure 6, we see this
type of method execution with m,(b), which indicates a change of state for set B or some

other information returned only to set B.

We have indicated the mathematical equivalence of the sef and class. Likewise, the
terms element and object are considered the same. A mathematical set consists of
unordered, discrete elements. This corresponds to the class, which consists of distinct
objects (each with a unique OID) which are logically unordered (although physically
ordered m a database). Using this premise, we will now show the mathematical
equivalence of the method and relation.

Suppose there are two sets X and Y. The set X is said to be a subser of Y if and
only if every element of X is also an element of Y. We may express this as:

XY iff Vx(xe X — xe Y).
Now suppose there are two sets Y and Z. The cartesian product of Y and Z, denoted
YXZ, is the set of all ordered pairs (y,z) where ye Y and ze Z. This may be expressed as:
YXZ = { (y,2) | yeYAzeZ}.
Given that a set is equivalent logically to an object class, and a set element is equivaient to
an object, we may substitute the classes A and B of Figure 6 for the sets Y and Z above.

We may think of a method as an ordered pair of objects, since a method m () obtains

33

state information from object a and sends it to object b, forming an ordered pair (a.b).
Since (a,b) represents a subset of AxB, the method may be though of as:

m,(b) < AxB.
However, given two sets A and B, a binary relation from A to B is a subset of AXB.

Therefore, the method is mathematically equivalent to the relation.

We are now in a position to develop a high-level, conceptual representation for an
object-oriented implementation schema. Starting with a GOOSE diagram and a miniworld,
that is, a verbal description of the database and its constraints, we may proceed to an

OPERA diagram as follows:

1. For each GOOSE superclass, construct an OPERA superclass by mapping the
superclass name into an EER entity set.

2. For each GOOSE subclass, construct an OPERA subclass by mapping the subclass
name into an EER entity set.

3. For each GOOSE superclass/subclass relationship, map constraints directly into the
OPERA diagram, thus forming a link between OPERA superclass entity sets and
subclass entity sets.

4. For each domain link in a GOOSE diagram, form an EER relationship type in the
OPERA diagram. Label the relationship type with the names of the classes at the
origin and destination of the link. If the domain link is recursive (same origin and
destination class), label the relationship type with a role name.

5. For GOOSE methods and properties with primitive domains, no relationship type
is mapped to the OPERA diagram. Such methods and properties are not explicitly
represented in OPERA.

6. For GOOSE methods and properties with single-valued domain links, initially label
the corresponding OPERA relationship type cardirality as 1:1. If the inverse of this
method or property exists on another class with a multivalued domain link, or if
the miniworld description explicitly states a many-to-one cardinality, relabel the
OPERA relationship type cardinality as N:1.

34

7. For GOOSE methods and properties with multivalued domain links, initially label
the corresponding OPERA relationship type cardinality as 1:N. If the inverse of
this method or property exists on another class with a multivalued domain link, or
if the miniworld description explicitly states a many-to-many cardinality, relabel the
OPERA relationship type cardinality as M:N.

8. After determining the relationship cardinality in steps 6-7, assign participation
constraints between OPERA class entity sets based on the miniworld description.
Partial and existence dependency are shown as in the EER model.

We are now in a position to generate an OPERA diagram for the hospital database
schema, whose miniworld was described in Chapter III. From this description and the
GOOSE diagram of Figure 5, the OPERA schema is derived following the mapping
scheme in steps 1-8. The conceptual view of the hospital database is shown in Figure 7.
D. CONCLUSION

The GOOSE diagram is an intermediate step between the object-oriented

implementation schema of Chapter III and the high-level OPERA schema derived from it.

GOOSE serves primarily as a conceptual aid in visualizing an implementation schema.
However, it also incorporates object-oriented characteristics of the EER model, which
eases the task of mapping to OPERA. Although OPERA does not offer an improvement }
over the GOOSE diagram in terms of gross database description, it simplifies a schema by ‘
abstracting out implementaion details (such as domain representations) and transforming 1
domain links into relationship types.

Although the OPERA and EER schemas look alike, they are significantly different.
For example, an EER representation shows all attributes of each class, including key

attributes, which uniquely identify an entity. In OPERA, attributes (i.e., properties and

35

weiBeiqd Vyado aseqeie(jendsoy 2 aingiyg

adiv aAvm @AVM @V
ASANN ~VOIqIN NVIOISAHd "ORILVIQEd | | TORLLALSHO ~IVOIDANS

/@\\ ﬂ/mw\\

JAVLS T TVIIQan N 1 @AV
1
1 1 N
UOSIANNS é HVISTTVOIQIR @ive
“INaLvd -INgLLVd
SSANTI SSANTTI
TIVYNIWYEL-NON TVYNINYAL | 4
< z
SSANTT N -pw_mwmﬂ W LNAILLVd

36

methods) are not explicitly shown. In fact, there are no key attributes, since each object is
uniquely identified by an implicit OID. In this way OPERA abstracts a database to the
highest conceptual level, without regard to lower level details of implementation.
Another significant difference between the two models is in the treatment of
methods. In the EER, methods are not represented. In OPERA, a method which has a
complex domain is modeled as a relationship type-owing to its theoretical equivalence to
the mathematical relation. Methods which have primitive domains are treated like
primitive properties; they are both considered to be details of implementation, and
therefore not explicitly modeled in OPERA. As we will see in the next two chapters, this
higher level of abstraction is beneficial when choosing an appropriate query language for

the object-oriented model and in describing relational databases in object form.

37

V. OBJECT-ORIENTED QUERIES

A. INTRODUCTION

A very important part of any data model is the set of operations which may be
performed on it. These operations may exist to construct a database schema (e.g.,
CREATE) or modify it (e.g., DELETE). In general, these are system-defined and not
easily modified; in fact, there is usually no need to. Another type of operation which is
required by a database user is the query. Queries exist primarily for the purpose of
extracting information from a database. An effective query language has several
characteristics, among which are conciseness, semantic integrity, and efficiency of data
retrieval. In this chapter, queries are examined from a semantic viewpoint; this is deemed
important for object-oriented data models, which rely on ease of understanding to model
real-world entities effectively.

Several different approaches to object-oriented queries will be examined. First, a
mathematical model upon which many object query languages are based, called
object-oriented predicate calculus (OOPC), will be reviewed. Next, two generic object
query model languages, GOMql and GOMsql, are studied. Then, a query language
developed for the ORION prototype object-oriented database system is examined. Finally,

a query model based on the entity-relationship data model, GORDAS, is expanded to
incorporate object queries. A sample object schema is queried using the different query

languages and the semantic efficiency of these approaches is compared.

38

B. OBJECT-ORIENTED PREDICATE
CALCULUS (OOPC)

One of the criticisms of object-oriented data models is the lack of a standard
mathematical foundation. The relational data model, on the other hand, has no such
problem. The mathematical concept of relation provides its basis and, through relational
calculus, supports the associated query languages (such as SQL). OOPC (Bertino, 1992)
attempts to bridge this mathematical gap by extending the relational predicate calculus to
object-oriented queries..

An OOPC query has the following syntax : { Target clause; Range clause;
Qualification clause}. The target clause specifies the data to be retrieved by the query. It
may be a variable representing an object in the schema or a property of an object. The
form it takes is either {x} or {x.A,} , where x is a variable bound explicitly to a class in
the range clause, and A, is a property of the class bound to x. The range clause indicates
an explicit binding of a variable to a schema class. This scope of this binding is both the
target clause and qualification clause. For example, the range clause {x/C} means that any
variable x in a query formulation represents an object of class C. The qualification clause
contains the selection criteria, i.e., predicates, which specify which object is chosen for

retrieval; the data from this selected object (or objects) is returned in the form of the target
clause. The format for the qualification clause is { © Range clause (Qualification clause)},
where © is either the universal (V) or existential (3) quantifier. (Qualification clause) is a

Boolean combination of predicates connected by the logical and (A), or (V) or not (—).

39

o

An example query is the best way to illustrate the use of OOPC. Referring to the
schema of Figure 8, a user of the database might need to know the salary of all presidents

of companies which have a manufacturing division. The query could be formulated as:

Query 1: {x.salary; x’Employee; 3 y/Company (x.name = y.president.name
y.divisions.name = "manufacturing”)}

Note the use of the dot operator () in the query. A path expression such as
{y.divisions.name} functions as an jmplicit join; that is, the classes Company and
Division are examined without need of an explicit equality comparison between a
common property (as is the case in a relational query). Also, this path expression returns a
set of objects in the course of navigation - {y.divisions} returns a set of objects which are
divisions of a single company. Each of these, in turn, returns its name, which is then
compared for equality with "manufacturing”. To make this query more efficient (and more
meaningful), OOPC allows for a quantified path expression. This is helpful when returning
sets of objects in the course of query navigation; in the case of existential predicates, it
allows the query to resolve without returning all possible set objects. For example, the

above query may be changed to :

Query 1A: {x.salary; x/Employee; 3 y/Company (x.name = y.president.name A
y.3 divisions.name = "manufacturing”)}

The semantics are clearer here; for every company, its divisions are searched until one
with the name "manufacturing” is found. Once found, the predicate evaluates to true, and

the query may be resolved.

40

v ADDRESS

COMPANY EMPLOYEE
. —® [Country:STRING
Name:STRING Name:STRING . try
Location Address ngm
Divisions* . umber:
- Salary: FLOAT Street:STRING
lP!‘eSlden(Manager
Department Zipcode:INT
DIVISION y
Name:STRING GE
Departments* AGER <
Managers* I > Vehicles()*
DEPARTMENT
. o VEHICLE
Name: lLicense:S'I'RlNG :
%
Managers Year:INT
Make:STRING
Model:STRING
{Color:STRING
RUCK
Engine_location:STRING Bed_type:STRING

Trailer_type:STRING

Figure 8. Company Database Schema

41

Methods, like properties, must be incorporated into an object-onented query
language. In OOPC, they both have the same form in a query path expression. For
example, a requirement may exist to determine the name and address of all department
managers who earn more than $50,000 per year and drive a company car with a year

model prior to 1985. A possible query might be:

Query 2: {x.name,x.address; x’Manager; 1 y/Department (x € y.managers
x.salary > 50000 A x.3 vehicles().year < 1985)}

This query illustrates the problem of how data is retriever from a subclass specified in a
schema. Manager is a subclass of Employee; x could be bound to this superclass in the
range clause, but the query semantics would suffer (in addition to retrieving the wrong
result - all employee names and addresses vice managers). However, x can be bound to
Manager and still project the name and address properties in the result, since these
properties are inherited from the Employee class. Another issue raised by this query is how
to restrict the set of managers to those of departments. This is done in OOPC via the
membership predicate {x € y.managers}. Finally, this example shows how methods are
handled in a query path expression - just like properties. This should be expected, since a
method (vehicles() in this case) returns an object (or set of objects), and a property
domain consists of an object (or set of objects). Hence, from the viewpoint of query
semantics, methods and properties are identical.

A feature characteristic of object-oriented data models is specialization of

superclasses via subclasses. In Figure 8 the class Vehicle is specialized in the two

42

subclasses Car and Truck, which have some common properties, and some which are
unique. Suppose a user needs to query the database to retrieve the license numbers of all

red mid-engine vehicles and blue long-bed vehicles. A possible query might be :

Query 3: {x.license; x/Vehicle; (x.color = "red” A x.engine_location = "mid") v
(x.color = "blue" A x. bed type = "long")

Given the schema of figure, will this query retrieve the correct data? Although clear in
semantics, it is incorrect in execution. The problem arises from the fact that x is bound to
Vehicle in the range clause; when a Car object is examined during query execution, an
error occurs when the property bed_type is examined, because a Car object does not have
such an attribute. The same problem occurs with Truck objects and the engine_location

property. OOPC resolves this dilemma with the CLASS_OF operator:

Query 3A: {x.license; x/Vehicle; CLASS OF{(x) =
[Car : x.color = "red" A x.engine_location = "mid";
Truck : x.color = "blue” A x. bed type = "long" |}

This construct is called an alternative predicate; the CLASS_OF operator applied to a
predicate binds the predicate variable to the class designated at the head of the predicate
clause. In the above example, x is bound to Car in the first predicate clause; in the second
clause, x is bound to Truck. Hence, the CLASS_OF operator allows a type of
polymorphism for binding variables within the qualification clause of the query. Although

the semantics are obscured somewhat, the correct result is obtained.

43

C. GENERIC OBJECT MODEL (GOM) QUERIES

1. GOMql
GOMq! (Kemper, 1994) is a high-level, stand-alone declarative query language
based on the relational query language QUEL. It is very similar in form to OOPC, but its

semantics are a bit clearer. The format of a GOMql query is :

range v, :C,, ..,v, :C,
retrieve v,, ..,V

' n

where P, ..,v)

In the range clause, the variables v, , ... , v, represent bindings to classes C,, ..., C,. In the
retrieve clause, v, , ..., v, are objects bound to classes in the range clause; these obiects
may be class properties ¢ - : - od results. The where clause contains the selection
predicate(s) P which are evaluated to produce the query results specified in the retrieve
clause. Path expressions of the form v, .name, .name, ...name,,, where v, is a variable
bound in the range clause and name, ...name, are class properties or methods, may be
elements of the retrieve and where clauses. The range, retrieve, and where clauses of
GOMg| query are analogous to the range, target, and qualification clauses of an OOPC
query. For example, Query 1 (retrieve the salary of all presidents of companies which

have a manufacturing division) is formulated in GOM as :

Query 4 : range e: Employee, c: Company, d: Divisions
retrieve e.salary
where e.name = c.president.name
and exists d in c.divisions (d.name = "manufacturing)

Note the use of the exists and in operators; these perform the same function as the
existential quantifier in OOPC. Like the existential quantifier, they must have as arguments
varniables which represent a set of objects. Here, d is a variable representing a set value; if
one element of the set {c.divisions} is found which satisfies the equality predicate, it is
selected. A similar operator, forall, exists in GOMql to function as a universal quantifier in
queries.

Query 2 (determine the name and address of all department managers who earn
more than $50,000 per year and drive a company car with a year model prior to 1985)

may be written in GOMq]l in a similar fashion:

Query 5 : range m: Manager, d: Department, v: Vehicles
retrieve m.name
where m in d managers and m.salary > 50000
and exists v in m.vehicles (v.year < 1985)

Note the use of the implicit existential quantifier in. This limits the managers bound to
variable m to those also bound to variable d {m in d.managers}.

Query 3 (retrieve the license numbers of all red mid-engine vehicles and blue
long-bed vehicles) posed a problem for OOPC in that the query semantics were impacted
by the hierarchical nature of the object schema. In GOMq], the use of the exists operator
greatly improves the meaning of this query, and eliminates the need for an explicit

CLASS_OF operator:

45

Query 6 : range v:lVehicle c: Car, t: Truck
retrieve v.license
~where exists ¢ in v (c.color = "red" and c. engine_ location =
"mid") or
exists tin v (t.color = "blue” and t.bed type = "long")

2. GOMsql
GOMsql (Kemper, 1994) is patterned after the standard relational query
language SQL and the object query language O,SQL. It has three parts to its query

format, like OOPC and GOMa|, and its format is :

select v,,......v,
Jfrom v, in {Class,| Nested query expression)}, ...v, in {Class |Nested
query expression }

where Py, .. v)

The select clause is the equivalent of the OOPC target clause; the variables v, ... v,
represent class properties or method results, and may be a path expression. The from
clause is the range clause of OOPC, and like it, establishes bindings between variables
v,...v,and Class, ... Class, via the in operator. However, a binding may also be
established from a variable to a nested query expression (which returns a collection of
objects). The where clause contains selection predicates (as in the OOPC qualification
clause) and may also contain nested queries.

To demonstrate the use of a nested query binding in the from clause, suppose a
query is needed to retrieve all managers from the Plymouth Division of Chrysler Motor
Company who earn more than $50,000 (refer to the schema of Figure 8). Such a query

might be written as :

46

Query 7 : select m
Sfrom min
(select d managers
fromdin
(select c.divisions
from c in Company
where c.name = "Chrysler")
where d.name = "Plymouth")
where m.salary - 50000

Nested query expressions are evaluated from the innermost to outermost as in relational
SQL. Although s. * nesting is possible, and may be useful at times in the from clause, a
shorter query can usually be formulated using path expressions. Query 7 could be changed

to read:

Query 7A: select m
from min Manager, c in Company, d in Division
where (c.name = "Chrysler”) and (d in c.divisions)
and (d.name = "Plymouth”) and (m.salary > 50000)

This version of the query is more concise than Query 7, and is easier to understand.
Queries 1, 2, and 3, previously written for OOPC and GOMq], are now written as

Queries 8,9, and 10 for GOMsql:

Query 8 : select e.salary
from e in Employee, c in Company, d in Division
where e.name = c.president.name and
c.divisions in
(selectd
fromdir D: .ision
where d.name = "Manufacturing”)

47

Query 9 : select m.name, m.address
" from m in Manager, d in Department, v in l'ehicle
where min

(select d. manager
Jfrom d in Department)

and m.salary > 50000

and

vin
(select m.vehicles
Jfrom m in Manager
where m.vehicles.year < 1985)

Query 10 : select v.license
from vinVehicle, cin Car, tin Truck
where vin
(select ¢
Jrom cin Car
where c.color = "red” and c.engine_location=
"mid")
or
vin
(select t
Jrom t in Truck
where t.color = "blue"” and t.bed type = "long")

These three examples all use nested queries in the outer where clause in order to select a
set, or collection, of objects(which is equivalent to a class). It is from this temporary
collection that objects bound in the from clause are examined for membership.
D. ORION QUERY LANGUAGE

Banerjee (1988) proposes a formal model of queries under the object-oriented data
model for ORION. In this model, a query is implemented as a series of messages sent to
objects in an aggregation hierarchy. An aggregation hierarchy exists in an object-oriented

schema when the dornain of some class property has as its domain another class, and this

48

class in turn has a property domain which is also a class; such a schema may be defined
recursively in terms of composite objects. In Figure 8 several aggregation hierarchies are
apparent. Objects of class Company are composite, having three properties with class
domains : Location, Divisions, and President. Each of these properties has one or more
associated aggregation hierarchies. For example, a hierarchy for Divisions is :

Divisions=» Departments=»Managers=> Vehicles()=» License
This hierarchy is the basis for the ORION query language syntax, and is the logical
eqivalent of a path expression in other query languages.

An ORION query is a series of messages which return a result in the form of a set
of objects belonging to a single class. This restriction has ramifications on the allowable
queries which may be formulated, as will be shown later. The format of the query, based
on the Smalltalk object-oriented programming fanguage, is :

(Receiver Object Selecior lteration Variable =~ Query Expression)
Receiver Object is either a set object which refers to a collection of objects (i.e., a class),
or a single object. lteration Variable is a variable (preceded by a colon) which binds the
Receiver Object instances to the same variable appearing in the Query Expression.
Selector is a message sent to Receiver Object ; it returns a set of instances of Receiver
Object based on the evaluation of Query Expression. This expression returns true or false
based on the resolution of predicates, and consists of code blocks which may contain other

queries.

49

To illustrate the use of the ORION query syntax, suppose the database represented
by the schema of Figure 8 must be searched to determine all companies located in New
York City which have a president who resides in the same city. The query may be written

as :

Query 11 : (Company select :C (:C City = "NewYork”
and (:C President Address City = "New York")

)

The resolution of this query is explained as follows. The select message is sent to the
Company object, which is bound to variable :C. In the query expression, to each object
bound to :C, the "City" message is sent, and this returns the value of the City property of
Company (which is an object). This object is sent the message "=" with the argument
"New York" ; the result is a Boolean value (True/False) depending on the value of City.
The message "and" is in turn sent to this Boolean object, with its argument the result of
the next code block. If both code blocks in the query expression evaluate to true, the
instance of Company bound to :C is selected for the result set of the query; the query is
resolved when iteration of :C over all objects in Company is complete.

In order to compare the semantics of the ORION query language with OOPC,
GOMgq|, and GOMsq|, the three queries wriiten for these languages will be translated into
the Smalltalk-like syntax of ORION. Recall Query 1, which requests the salary of all

presidents of companies which have a manufacturing division :

50

Query 12 : (
(Company select :C (:C Divisions some :D
(:D Name = "Manufacturing”)

)

)
President Salary

)

Note the use of the some selector message in the query expression. This selector returns
true, and hence select chooses :C for the result set, if there is at least one instance of a
division (bound to :D) which has a name attribute domain equal to the string value
"Manufacturing". This is ORION's version of the existential quantifier; a similar message
selector all functions as the universal quantifier. Finally, it is interesting to observe tha?
the inner query returns objects of class Company, and the message "President Salary" is
sent to this set object (a subset of all objects of class Company) to return the result of the
outer query.

As mentioned previously, the restriction on object types in the result set of an
ORION query can impact the possible queries which may be devised. For example, Query
2, which requires both the name and address of all department managers who earn more
than $50,000 per year and drive a company car with a year model prior to 1985, cannot be
written in ORION because of the single object class limitation for the result set. However,

it may still be formulated as two separate queries. The query returning the name is :

51

Query 13 : (
(Department Managers select :M (:M Salary - 50000
and (:M Vehicles some :1”
(:V Year -- 1985)
)
)

Name

The query returning the address is identical, with the "Address" message substituted for
the "Name" message.
Query 3, retrieve the license numbers of all red mid-engine vehicles and blue

long-bed vehicles, could be proposed as :

Query 14 : (
(*Vehicle select :V (:V Color = "red"
and (:V Engine_location = "mid")
or (:V Color = "blue")
and (:V Bed type = "long")
)
)
License
)

In this query, the asterisk operator (*) further defines the function of the select message
to retrieve all instances of Vehicle and jts subclasses. This poses the same problem that
occured with Query 3 in OOPC,; if on a particular iteration of the query, the Vehicle object
bound to :V is sent the "Engine_location" message, an error may occur in processing the
query if an object of class Truck (for which Engine_location is undefined) is queried. To

solve this problem, the query must be divided into separate queries :

52

Query 144 : (
(Car select :C (:C Color = “red”
) and (:C Engine location = "mid")

)
)

License
)
Query 14B : (
(Truck select :T (:T Color = "blue”
and (:T Bed_type = "long")
)
)

License

)
E. GORDAS

GORDAS (Elmasri,1981) is a formal high level query language based on Chen's
entity-relationship (ER) model. It is unique from a semantic standpoint in that no variables
are required in formulating queries; as will be seen, this is one reason queries in GORDAS
are somewhat easier to understand than some other languages. Also, queries in GORDAS
are derived directly from a high-level conceptual representation of a database schema. As
a result, a more natural language query interface is possible. Unfortunately, the language is
not designed specifically for object-oriented database schemas. To solve this problem, an
extension of the base conceptual model is proposed.

GORDAS is well-described by its name (Graph-Qriented Data Selection). The first
step in making GORDA.S queries is to construct a high-level conceptual schema from an
implementation schema. This conceptual schema will be the OPERA schema developed in

Chapter I'V. This schema is then mapped into a directed graph called the schema graph, or

53

SG, which represents the intension of the database to be modeled. GORDAS queries are

derived directly from the SG.

First, the GOOSE schema diagram of Figure 8 must be transformed into an OPERA

model‘representation. Figure 9 is the result of this mapping. The schema graph (Figure 10)

is formed from the OPERA schema as follows :

L.

(78]

For each superclass entity type in the OPERA schema, construct a corresponding
node in the SG. Each such node is labeled (ES, <entity set name>, <:>, <attribute
names>). This is the entity set ES,.

For each subclass entity type in the OPERA schema, construct a corresponding
node in the SG. Each node is labeled (ES, <entity set name>, <:>, <attribute
names>). Only attribute names specific to the subclass are named. This is the entity
set ES,.

The entity set ES = ES, UES,.

For each relationship type in the OPERA schema, construct a corresponding node
in the SG. Each such node is labeled (RS, <relationship set name>, <:>, <attribute
names>). This is the relationship set RS.

Nodes are numbered consecutively beginning at one. Two nodes may not have the
same number.

Color all relationship nodes identically; color all entity nodes identically, but
different from relationship nodes.

For each superclass/subclass ES node, construct an undirected link labeled by the
subset symbol (<).

For each entity-relationship pair, construct a link which is directed from the ES
node to the RS node. Label this link (<far entity name, near entity name>,<:>,
<constraint c,,c,>)). <Far entity name> refers to the entity participating in RS in
the direction of the link, and <near entity name> refers to the entity participating in
RS in the direction opposite the link. <Constraint c,,c,> limits the number of
relationship instances for a participating ES nodes to the range (c,,c,). The default
value for (c,,c,) is (0,). This is the directed edge set Dy.

Form a directed, colored graph G = (V,E), where V consists of all nodes n such
that (ne ES) v (n € RS), E consists of all edges e such that ee D, and no edge
e exists such that two nodes n of the same color are directly conected.

54

Steps 1,2,3,6,and 7 are extensions to the GORDAS model which allow for object-oriented
modeling (superclass/subclass inheritance) and greater clanty of representation (graph
coloring).

Before defining the sematics of a GORDAS query, it must be mentioned that
whereas the intension of a database is modeled by an SG, the extension may also be
modeled by a directed graph called the database graph (DBG). This graph is derived from
the SG; its labeling is similar, with the notable exception that attribute values are shown to
indicate a particular instance of a node in the SG. In addition, a DBG uses the node
numbering scheme of the SG to group RS instance nodes. The mapping of SG to DBG is
beyond the scope of this paper; more details are found in Elmasri (1981).

In order to construct a GORDAS query, one must be able to traverse the SG (and
concurrently, the DBG). This is realized via the path expression. A path expression may
be of the form [N] or [P of N], where N is a node from the SG and P is a ~refix of the
path expression. A prefix may be an attribute name, another node, or a connection name.
A connection name determines the direction of traversal in the path expression; it is
indicated by an edge label in the SG. A path expression evaluates to a single value or a set
of values from the DBG.

To see how a path expression works, refer to Figure 10. The path expression
[COMPANY] would specify the single node COMPANY in the SG, and all instances of
this node in the DBG. The path expression [division of COMPANY] would specify a set

of DIVISION nodes for each COMPANY node. In such a path expression, the directed

35

ewdYdS VYIdO aseqeie(Auedwo) g aingig

qvo

_INTWI¥V4Iq

HWLYYdd

MO
a
TIIHAA
N
4
4ADOVNVIW
N i
FAA0TIWT
N
.ﬁu«.y
Noisliid
§
o SNOISIAIQ
N I

INZAISINd
ANVIROD

NOISIAI
TANYdNO:

SSayaav

I

_ §534Q
ANVdH0D

ANVdWOD

56

ydern ewdyog SY@IOO aseqereq Auedwoy [3inJiy

128 Kpusy

(22Tvume ‘robopds)

125 diysuonvyay

(FIHIN YTIOVNVH ‘SY)

(423wumu ‘9 21y0a)

(4TOVNYA ‘ST)]

(9047 431104 [“add1 " pag - N3NYL'SA) (wonvrol suifug : ¥vI 'sq)

61 HAON

81 AAON

(4021 *asuaor] 2yvp ‘19po ‘44103 : TIIHAA ‘ST)

S{ HdON

«I

6 4dON

(K4pjpg *awup

sy)

(s Mhopdws ‘1s3wuvm)

- TAOTdNT *ST)

(1°7: s0bopdms

‘seoappe)

£ ddON

(s2hordmrl s rusindrp)

(awoN : INIALIVIAA 'ST)

(moymdep ..&.&L

S dAON

o)

(swowbindap ‘uotsrarp)

(ININLIYVIIA TTAOTINT SY)

(INTWLYYIIT NOISIAKD ‘SY)

(3poodiZ ‘122415 “aaquny 1) ‘Guno) : SSTHAQY ‘ST

(1'l : msaappw Jobopdres)y

(SSTYAAV FIAOTIWA ‘SY)

(YTOVYNYIW NOISIAIQ ‘'S¥)

LI HAON

(1'1 : sesappy 'Guvdwo3)

(SST4AAV ANVINOD 'S¥)
(I'] : kuodwmes ‘s2o.ppe)

(INFQISFYd ANVIHOD ‘SH)

)
(Kuoda

10 ANVIWO0O ‘SY)

57

graph is followed from the last reached node COMPANY to the RS node

COMPANY _DIVIS]AON via the connection name division, and followed from the RS
node via the same connection name to DIVISION. Every path expression must be
well-specified; that is, a connected path must exist from the last reached node in the path
expression (the node at the end of the expression) to any other node reached by traversing
the path expression in a direction away from the last reached node.

Path expression may also contain predicates. For example, the expression [Name of
employee : (Salary > 50000) of DEPARTMENT] would indicate the names of all
instances of the set EMPLOYEE who make more than $50,000 per year and belong to a
set DEPARTMENT. Note how the path is traversed : starting at the last reached node
DEPARTMENT, the connection name employee is followed to EMPLOYEE, where the
predicate (Salary > 50000) is applied. The Name att ibute is then used with this restricted
set to specify the instances desired. Note the two prefixes in the expression : <Name > and
<employee : (Salary > 50000)>. Thus path expressions may contain nested prefixes.

A GORDAS query is specified on a schema graph SG, and retrieves information
from the corresponding database graph DBG . The query is formed from two clauses : the
GET clause and the WHERE clause (Elmasri, 1981, p.60). The GET clause contains one
or more path expressions representing SG nodes N, , N, , ..., N, . The cartesian product C
=N, x N, x ... x N, is taken, and to this set is applied the predicate P of the WHERE

clause. Each element ¢, of C is returned as the result set {c, , c,, ..., ¢, }, where ISk <n

and each c; satisfies P.

58

The three queries which have been written in OOPC, GOMsgl, GOMq], and
ORION may now be drafted in GORDAS. First, Query 1, which requests the salary of all

presidents of companies which have a manufacturing division :

Query 14 : GET Salary of president of COMPANY
WHERE division [of COMPANY] INCLUDES
(GET division of COMPANY
WHERE name = "manufacturing”)

Note the use of brackets in the WHERE clause. The phrase [of COMPANY] is added for
clarity, but is not required since division is bound to COMPANY in the GET clause. The
predicate of the WHERE clause uses an operator INCLUDES to compare two sets (one
of which is a nested query) for membership in the result of the query.

Query 2 (get the name and address of all department managers who earn more than

$50,000 per year and drive a company car with a year model prior to 1985) is stated as:

Query 15 : GET <Name, Address> of manager of DEPARTMENT
WHERE (Salary of manager [of DEPARTMENT] > 50000)
AND
(vehicle of manager [of DEPARTMENT] INCLUDES
GET vehicle of manager of DEPARTMENT
WHERE Year of vehicle of manager [of
DEPARTMENT] < 1985

In this query, note that the attributes Name and Address of the ES node MANAGER are
inherited from the ES node EMPLOYEE. This represents an extension to the GORDAS
query language to allow for subclass inheritance of attributes in processing of query

statements.

59

Query 3 (get the license numbers of all red mid-engine vehicles and blue long-bed

vehicles) is written in GORDAS as :

Query 16 : GET License of Car, License of Truck
WHERE
(Engine_location of Car = "mid”" AND Color of Car = "red")
OR
(Bed _type of Truck = "{ong” AND Color of Truck = "blue")

In this query, the GET clause contains two path expressions. Together these represent the
cartesian product of all DBG nodes which are cars or trucks (i.e., vehicles).
F. CONCLUSION

Several object-oriented query languages have been examined in this chapter. The
main criterion for comparison of these languages is their relative ease of understanding;
that is, semantic clarity. GORDAS is clearly the easiest to understand. A good example of
this is Query 16. Even someone with no knowledge of query language syntax could
determine what the purpose of the query is. On the other hand, OOPC expresses this (as
Query 3A) in an arcane way, using the CLASS_OF operator to make it work. GOMql
uses the exist operator (Query 6) and a parenthetical structure which is not as easy to
evaluate logically. GOMsql (Query 10) is more lengthy to formulate than the GORDAS
version, and nesting of queries does not help the meaning. Finally, in addition to being
split into two separate queries (Query 14A, 14B), the ORION version is heavily dependent

on Smalitalk syntax.

60

GORD AS was implemented during the 1980's as a stand-alone, high-level,
non-procedural query language interface based on the Entity Category Relationship
Model (ECR), an extension of the ER model incorporating generalization, subclasses, and
entity grouping based on relationship roles. Queries in this implementation are translated
to a relational algebra internal form for processing (Elmasri, 198 1).

The utility of GORDAS as a semantic vehicle for query formulation is primarily due
to its natural language quality. This is a direct result of its mapping from a high-level
schema to an associated query graph, which is in turn used to write queries. Although the
semantics of GORDAS are more clear than other query languages, its overhead is much
greater; a big effort must be put into developing a query graph in order to write queries.
Still, for an object-oriented schema, queries are more concise and understandable with this

language.

61

VI. MODELING THE EWIR DATABASE

A. INTRODUCTION

The Electronic Warfare Integrated Reprogramming Database, or EWIRDB, is the
primary Department of Defense (DOD) approved source for technical parametric and
performance data on noncommunications emitters (National Air Intelligence Center,
1994). Its primary purpose is to provide an up-to-date and accurate source of information
for reprogramming United States electronic warfare (EW) combat systems such as radar
warning receivers, combat identification systems, electronic jammers, anti-radiation
missiles, and other target sensing systems. A variety of information is included in the
EWIRDB, including parametric data on radars, jammers, navigational aids, identification
friend or foe (IFF) equipment, and numerous noncommunications electronic emitters.
Secondary objectives of the EWIRDB include support of EW systems research,
development, test, and evaluation; modeling and simulation; combat operations planning,
and EW tactics and training.

The EWIRDB was developed initially by the U.S. Air Force in the 1970's but has
become a joint service product, involving input by all branches of the U.S. Armed Forces,
DOD, the National Security Agency (NSA), and various other intelligence agencies.
EWIRDB data is both observed and assessed. The observed parameters are obtained
from the KILTING database maintained by NSA. Assessed data is provided by two

sources, Scientific and Technical Intelligence (S&TI) Centers and the Air Force

62

Information Warfare Center (AFTWC). DIA (Defense Intelligence Agency) is responsible
for maintenance of the S&TI assessed data while AFTWC maintains the United States
Noncommunications Systems Database (USNCSDB). The three sources (KILTING,
S&TI Assessed Data, USNCSDB) are merged into the EWIRDB, which is maintained by

the National Air Intelligence Center (NAIC). Figure 11 illustrates this process.

INTELLIGENCE SOURCES

S&TI

ASSESSED USNCSDB
[DIA) [AFIWC]

Foreign/U.S. Emitters (observed) Foreign Emitters (assessed) U.S. Eminters (assessed)

Figure 11. EWIRDB Synthesis
Although extremely important to our nation's warfighting capabilities, the EWIRDB
is not easy to comprehend. Its format is difficult to interpret, assessed/observed codes are
not standard for all record types, and the database is generally described in terms of the
physical storage structure. The focus of this chapter is to examine the form and content of
the database, represent it as an object-oriented schema, map this schema into a high-level

model of the database, and create a GORDAS schema graph for EWIRDB queries.

63

B. EWIRDB STRUCTURE
1. Storage Structure

Parametric data associated with electronic emitters is represented as a logical
tree, although the actual storage st~ - record type. This parametric tree orders a
long list logically and hierarchically in a way that proceeds from broad characteristics
through levels of successively finer ones (National Air Intelligence Center, 1994).
Parametric data exists in subfiles of the tree structure. Subfiles are major groupings, or
subtrees, within the parametric tree which contain logically related data.

Emitter parametric data may exist in one of three tree types : (1) Pulsed/
Continuous Wave (P/CW), (2) Receiver Performance Assessment (RPA), or
(3) Electronic Countermeasures (ECM). The PCW tree is used primarily for signal
identification, the RPA tree is used in electronic countermeasures design, and the ECM
tree is used for radar electronic counter-counter measures (ECCM) applications. The
edges, or branches, of all three tree types are indexed by a number and additionally, a one
or two character subfile code. Branches which only function to connect subfiles together
are called superheaders and carry a numerical designation only. Figures 12, 13, and 14

show the top-level logical storage hierarchies for the three parametric tree types.

2. Record Format
The EWIRDB product contains many types of information in addition to

emitter parametric data. The standard storage and distribution format for this data is the
Technical Electronic Intelligence Reference File (TERF). The TERF format consists of six

different record types, which are designated S00, SO1, S02, S03, S04, S05, and S06. A

64

' PXW TREE

10 GENERAL INFORMATION (A)

11 SIGNAL POWER (B

)

12 ANTENNA

121 ANTENNA POLARIZATION

1211 TRANSMIT ANTENNA POLARIZATION (O

1212 RECEIVE ANTENNA POLARIZATION (D)

13 FREQUENC AND

1213 TRANSMIT/RECEIVE ANTENNA POLARIZATION (E)

1221 TRANSMIT ONLY ANTENNA (F)

1222 RECEIVE ONLY ANTENNA (G)

122 ANTENNA CHARACTERISTICS

131 PULSED SIGNAL

1223 TRANSMIT/RECEIVE ANTENNA (H)

1311 PULSED SIGNAL SHAPE (D)

13123 MULTIPLE PULSE GROUPS (K)
13i2 PRI/PGRI ()) [

MODULATION CHAR

132 CW

13131 RFLINE STRUCTURE (L)

1313 FREQUENCY

13132 PULSED RF (M)

1321 CW FREQUENCY (P)

14 ASSOCIATED SIGNALS/SYSTEMS (R)

1322 CW MODULATION (Q)

Figure 12. P/CW Parameter Tree

65

15 RPA TREE

1511 RECEIVER FRONT END (AB)

1512 FREQUENCY CONVERSION (AC)

151 RECEIVER PARAMETERS (AA) | 1513 IF SECTION (AD)

1514 SINGLE PULSE PROCESSING (AE)

1515 MULTIPLE PULSE PROCESSING (AF)

1516 DISPLAY/ANDICATOR (AG)

152 EOCM CAPABILITIES (AH)

153 SYSTEM INFORMATION (Al

Figure 13. RPA Parameter Tree

66

18 ECM SYSTEM (EA)

181 SYSTEM COMPONENTS (EB)

182 SYSTEM PLATFORM (ECQ)

183 ASSOCIATED SYSTEMS (ED)

184 MODULATION SYSTEM (EE)

1 ECM TREE

19 ECM WAVEFORM (ED

185 TRANSMITTER SYSTEM (BF)

186 RECEIVER SYSTEM (EG)

187 ANTENNA SYSTEM (EH)

191 AUXILIARY DATA (EJ)

192 RF CHARACTERISTICS (EK)

193 MODULATION (EL)

Figure 14. ECM Parameter Tree

67

single emitter file may consist of multiple instances of each record type, and also record
types from different sources. For example, an emitter may have a number of SO2 records,
and each of these may be derived from the KILTING, S&TI, or USNCSDB sources.
Figure 15 shows a sample emitter file with all record types and data sources. Before
proceeding to map the record types into an object-oriented schema, a description of each

type is needed.

a. Classification Record (S00)

This record is unique in that there may be only one per emitter file It
defines the overall classification for the emitter, which is the highest classification of any
component record from the three EWIRDB input sources. The first three data fields in the
S00 are common to all the other record types. The Record Type is a string denoting the
type of TERF record (800, ..., S05). The Source Designator is a character which
indicates the EWIRDB input source (K = KILTING, E = S&TI, U = USNCSDB). The
Notation is a five character alpranumeric known as the ELNOT (electronic intelligence
notation) which is unique to each emitter. The remaining two fields in the SO0 are the
Classification, which shows the classification of the emitter file, and Retrieval Date,

which indicates when data was provided from KILTING (observed data only).
b. Emitter Name Record (501)

At least one emitter name record must be provided per emitter file. After
the first three data fields is the Emitter Name. This is string value which is the common
name for the emitter hardware (such as a radar name). Next are two fields which differ

depending on whether the data source is observed or assessed. For KILTING data, the

68

SAE Code and Date of Last Significant Change follow, and for S& TVUSNCSDB, the
S&TI Code and Multiple Source Review Date occur. SAE Code is a four-character code
which indicates the agency responsible for the ELNOT, and Date of Last Significant
Change is a six-digit date code (YYMMDD) which is the date of last review of the source
KILTING database. S&77 Code and Multiple Source Review Date are the assessed data
analogs of SAE Code/Date of Last Significant Change. The last field, Parametric Update
Date, is common to assessed and observed data and provides the most recent change to

any S03, S04, or SO5 record.
¢. Subfile Header Record (502)

Although this record contains no emitter parametric data, it is required for
any subfile containing parametric data. In addition to the initial three data fields, all S02
records have the next three fields in common : Subfile Tree Number, a 12-digit number
which is the parametric tree index for the subfile (see Figures 2-4); Subfile Name, a
25-character field containing the associated EWIRDB subfile name; and Subfile Code,
containing the one or two-character code for the parametric tree subfile. In observed
records only, the Technical Date precedes the Subfile Code and indicates when the last

change was made to any S03 record in the subfile.
d. Parametric Data Record (503)

The S03 record is the most useful, since it actually contains the emitter
measurement names and indexes into the parametric tree where the data is stored. For
both observed and assessed data, the first nine fields are identical. After the record type,

source code, and ELNOT, come the following fields : 7ree Number, a 15-digit number

69

which is the index into the parametric tree; Suffix Code, a two-character code used to
identify operating modes of the emitter, Measurement Name, a character string which is
the name of the value stored at the parametric index; Units, a string describing the scale of
data or format of text entered in the tree; Lower/Upper Value Text, which, for numeric
entries, gives the possible range of values which may be entered, and a single text string
otherwise.

The next two fields differ depending on the data record source. For
assessed data, Confidence Level and S&T1 Code follow; for observed data, Measurement
Accuracy and Measurement Accuracy Units. Confidence Level is a one-digit code which
is a system analyst's confidence in the parametric data; S&77 Code is the same as in the
SC1 record. Measurement Accuracy and Measurement Accuracy Units are seven and
three-digit fields which describe the accuracy (if available) for the parametric data units.

Reference Number Comment Number, and Reserve Mode are common to
observed and assessed data. Reference Number (R = KILTING, A = S&TI, F =
USNCSDB) and Comment Number (C = KILTING, K=S&TI, N = USNCSDB) are used
to connect the SO3 record to an S04 reference record or to an SO5 comment record. Both
are four-character fields, the first character being the code for the data input source.
Reserve Mode is a numerical value showing (1) that an emitter mode is a wartime reserve
mode (WARM) and (2) the system analyst's confidence level in this assignment.

The next field is either Classification (assessed) or Intelligence Source

(observed). Classification provides a one-character code for classifying data in the

70

Lower/Upper Value or Text fields, Intelligence Source (one-character code) is only used if
multiple intelligence sources were used to derive SO3 records.

The last three fields in the SO3 record are Subfile Code, Releasability
KILTING Preferential Rating, and Date of Last Update. The Releasability field,
applicable to assessed data, is a two-character code representing the countries which may
have access to the SO3 data. KILTING Preferential Rating is a one-digit system analyst
rating for relative importance of different KILTING data entries. Both Subfile Code and
Date of Last Update are used by all record sources. Subfile Code is identical to the S02

entry and Date of Last Update reflects the last significant change to the parametric data.
e. Reference Data Record (504)

S04 records are used to store information on references which are
connected to parametric data record (S03) entries. These reference records enable system
analysts to trace parametric data back to source documents. All six fields are shared by
assessed and observed records; however, the last field has a different format for both
types.

After the record type, source, and ELNOT are three fields which are
identical for all source types. The Reference Number field is the same as the SO3 entry,
and serves as a link to the SO3 data. Line Number is a three-digit number which signifies
the line of reference text. Reference Text is a string which describes the particular
reference, but its format varies. For assessed data, this field contains information on the

published reference; the last line for each reference also contains a c.assification of the

71

reference text data and its releasability to other nations. For KILTING records, the
reference text is a formatted field which contains specific information on each successive
line, such as document number, document title, report date, and producer of the

document. The last entry is the report classification, which is a text string.

f Comments Record (505)

This record contains two primary types of information : (1) amplifving
descriptions of data contained in the SO3 records, and (2) suffix tables. A suffix table is a
matrix with rows and columns of suffix codes which may be mathematically manipulated
to calculated all possible operating modes of an emitter. A detailed examination of suffix
codes/tables is beyond the scope of this paper, but is described in National Air Intelligence
Center (1994).

The first three fields of the SOS are identical to all other TERF records, The
next three are unique to the SOS. They are Comment Number, Line Number, and
Comment Text. Comment Number is identical to the entry in the SO3 field, it is the link to
a parametric data record. In addition, it has a unique comment number ("0000") which is
used for listing and describing the suffix table. Line Number is analogous to the same field
in the S04 record. Comment Text contaiﬁs the amplifying text (uicluding suffix table). For
assessed records only, a classification comment text line follows a series of comment lines
and provides the classification of the text preceding it. The fields in this type of comment

are Classification Code and Releasability Code (which may be blank if non-applicable).

72

JRULIO P10y JYHL ‘SI 2anSiy

09076

y60¢6

C/Muen

"SNOILLIANOD NIVY ALVIAAOW ANV LHOI'T NI ALVIAd0 NV)D d4vavy aHlL
‘ATISNOANVLINNIS
AATIOUINOD ANV AIID VYL A4 NV LAVEDUIV XIS OL dN

‘SAIALNNOD ANOS OL
(JAL40dXT ANV DH04 ¥1V FHL A9 qdSN SAVAVI HOVOUddV NOISIDAdd
aasvd aNNOYUH AYY (A0 TT-NIH/NV ANV (GAXLH) 6INdL/NV

‘L
‘€S‘ISIS‘S ..

IN/AAA]N

P 4 0001004010

VNl 100NT0044SN |
v

9T10v6
0906 9 V 10001004430
\/
P0T0E69070€6 AS(1
9T069070¥6DINN
$09076+09076
1010v6

0090¥L
(/Mess
(T661-1661) SWALSAS FUVAYVM JINCULIATE ANV AvVavid S,ANVE

91L-SOL dd ‘PL6T
ANNS ‘9 "ON ‘79 TOA

SONIA3D0dd 3331
§'t8 §'t8 MUd
9010¥6

414VL XI440S S.LSATVNV
INIWJOTIATA
40 ALVY.LS ANV A4O.LSIH
dIAHL ‘SYvVavid vOo

LOOTOONGING.LNSOS
900100NGINA.LNSOS
SO0T0ONGINILASOS
PO0I0ONGIN.LNSOS
£00T0ONGINd LNSOS
CO010ONGINI.LNSOS
109100N6INJ.LNSOS
900000D6INd.LYSOS
§00000D6INd.LNSOS
$00000D6INJ.LISOS
£00000D6INILMSOS
Z00000D6INdLMS0S
100000D6INJLMSOS
£0010046INJLIYOS
Z00100U6INILYPOS
1001004 6INJ LIPS
Z00100V6IN LAYOS
100100V6INdLAYOS

HAMOd AVEd 01 111000000000 GINLNEOS

JAMOd TVNDIS

110000000000 6INJLMZO0S

HOVOUddV (LXHAL) NOILAIYDSAA YALLINA ++ST'010000000000 6INJLNE0S

vd

VI CTOMIGOVIIAN T SALVISAILINA SN (1XdL)
v

(Lxap

NOILVWHOINI TVHANED 010000000000 6INJ.LNZ0S
AUINNOD YASN VNPI'010000000000 SINJLACOS
NOLLVINYOAINI 'TVHINED 010000000000 6INJLAZO0S
NOLLONNA dALLIWA ++07°010000000000 6INJ.LIE0S

9010¥6 NOILVWYOJNI TVHIANAD 010000000000 GINIIMNZOS

61"Nd.I/NV6INdLNI0S
6I"NdL/NV6INdLATOS
61-NdI/NV6INDILNTGS
AALAISSVIONNGIN.LM00S

73

C. OBJECT-ORIENTED EWIRDB

The first step in developing a high-level conceptual model for the EWIRDB is to
map the TERF record format into an object-oriented schema. This can be achieved by
converting the basic record structure into a class structure. That is, each record type in the
TERF is mapped into an object class. With such a structure, the importance of assigning
unique ELNOTS to each emitter file is no longer significant in regard to physical storage,
since unique object identifiers are assigned to each emitter file object. ELNOTS, however,
retain their importance from a logical classification viewpoint.

Figures 16 and 17 depict the TERF format in the object form of a GOOSE diagram.
This schema represents all the information contained in the various record types, but in a
more meaningful way. Whereas the TERF format tends to model data in a low-level
(physical) manner, the object schema provides an implementation (logical) model for
representing the EWIRDB. As can be readily seen, the object schema groups properties
(fields) which are common to both observed and assessed data in a single superclass for
each record type, and lists properties unique to each data type in a separate subclass. The
object model also converts some TEREF fields into methods for efficiency of data retrieval.
This schema can be directly mapped into a high-level conceptual (OPERA) schema, which
in turn is used to develop a schema graph for GORDAS queries. First, it is helpful to

examine how each record is mapped into the object class structure.

BWAYDS 193Iq0 d@IMT 91 2inSig

ONIALS : Anjiqesesfoy

LNI : Suney jenuasojaid

AVHD - uonedjissel)

AVHD : 2unog~ [P

ALVQ : 31eq (eI

ONIYLS : 9p0D IL®S

[ONILLS : suun~Asemmdoy

LNI 19497 32udpyuo)

ONIYLS : AJeInaoy

v.ivd
INLIFNVYVd
~QdSSsassy

vivd
“ORILANVYVd
~QdAdESd0

1vOo1d: A_mothzmSZ
3p0) IIYQNS)YN 9L

gLvd : arepdnise

LNI : SpOJN 2AI0S9Y

Li m_.:;: *

SIUdWIWOD)

—

* BB 90uaIdjay

ONIYLS : siun

DONIILS - 1X3L

ONIALS : 9njepA~1addn

ONIYLS : 9NEA om0}

ONIYLS : IUoWaInSes |y

ONIJLS : 9p0D 3yqng

ONIRLS : 3po) xyjng

ONRJLS : uoneloN

AVHD : 2d1nog

ONRILS :2dA 17 p1039y AI_
VLVA DIALANYIVd

ONIILS : (3poD
“o|yqng)oureN “opyqns

mmD<mI|mq_n“me.dm>mmm q40

HLVA : A SN |71 v : 98uey) ise]

i LVOTA : (3p0D
SUQRS)YN AL NS

ONIULS : 9POD LLYS{{ONIILS : 9p0D AVS

ONDILS : 9poD 91yqng

DONIYLS - HONEION

AVHD : 90100 |

NIILS : 9d4 L7 piooay

JHAVHIH 3T49NS

LVA : 1eq [BASLIIR

ZO~,—.<U~Emm<_n*U|Qm>~_mme

DNRILS : uoneoyisse|y
DNRILS : uoneioN
YVHD : 2dmog
ONRALS : 3d4 1 "proday]
NOILLVIOIISSVTO

YN ETTY
"qassassvy (EIREN:

HLVQ : arepd) ~oursurereq
DONRYLS : dureN " Ionjurg
DNRILS : UOneloN
YVHD : 90inog
ONRILS : 2dA 1L pIo3sy
HAVYN

L] 281y

v
—

« Stuaunuo))}

» Bl 0RRJIY
* Ble oURuRR]
+ JOPEIH dIang
+ SUREN Jomuig

UoNedYYISSe])

JHLLINA

75

BURYDS 3330 gdIME L1 SinSiyg

ofomsiy ¥

ONIALS : Aniqesesjoy

AVHD : 3p0) uonesyisse)

SLNIWIWOD ddSSHSSV

DONIILS : Anjiqeseajoy

AVH)) : 9p0) uoneoyisse|)

ONIYLS : uoneoijisse|

DONIRLLS X9 uowo)

ONIRLLS : JoqunN aury

ONIRLLS | JoqunN uswwo)

ONIULS | uoneioN

AVHD : 90%1n0g

ONILLS : 9d6 L piosoy

SINFIWINOD

vivd
“HONHYIITA
~Qdssassv

vivd
“HONZYAATY
~@dA¥gsdo

OZE._.W‘” 1X9] T90UdIRJOY

ONILS : Joquiny ~oury

ONIYLS : IoquinN —9oudIajay

ONRILS : uoneioN

AVHD : 2amog

ONIWLS : od4 1 prosoy -

91 24nd1y

ViVd ONTIHEI9d

76

1. Emitter

This class does not correspond directly to a specific TERF record, but rather to
an entire emitter file (multiple TERF records). The property Classification has as its
domain objects of class Classification. 1t is also single-valued, reflecting the fact that an
emitter file has one and only one classification record. In other words, its domain is a
singleton set. The other properties of Emitter are multivalued, i.e., they return sets of
objects of the following classes : Emitter Name, Subfile Header, Parametric Data,

Reference Data, and Comments.

2. Classification

The Classification object class corresponds to the SO0 record. It is modeled as |
a superclass with properties common to observed and assessed data, and also as a subclass
Observed Classification for the additional property unique to KILTING data. Of course,

all KILTING data objects inherit the properties of Classification.

3. Name
This is the object counterpart to the SO1 record type. Again, there are five

properties corresponding to the SO1 fields which are common to both data types, and two
subclasses, Observed Name and Assessed Name, which have properties specific to

KILTING or S&TI/USNCSDB source data.

4. Subfile_Header
The Subfile_Header class contains properties analogous to the S02 record

fields, but differs in implementation. The subfile tree number and subfile name are returned
by object methods instead of properties. By passing Subfile_Code as a parameter to

Subfile Tree NR and Subfile Name, the subfile codes and tree numbers for all

77

Subfile_Header objects may be retrieved by the same block of code This allows all the
tree numbers and names to be stored centrally and eliminates the need to duplicate them in
a property for each object (or field for each record). A subclass Observed Subfile Header
inherits these two methods (and four properties) of Subfile Header, and includes an

additional property.
S. Parametric_Data

This class corresponds to the SO3 record, but is distinct in several ways. First,
there are two subclasses, Observed Parametric_Data and Assessed Parametric Data,
with properties in addition to their superclass. Also, these subclasses inherit a method
Tree_NR, which takes as parameters the subfile code and measurement name and returns
the tree number for the parametric data. As with Subfile Header, this technique saves
storage space and allows all tree numbers to be stored once. Finally, instead of storing an
explicit reference number and comment number, Reference Data and Comments return
sets of objects of the classes containing references and comments associated with objects

of the Parametric Data class.

6. Reference Data

This class consists of objects which are domain elements of Emitter and
Parametric_Data. The properties correspond to the S04 record fields, and two subclasses

exist to show the differences in classification coding between assessed and observed data.

78

7. Comments

Similar to Reference Data, this class exists in the domain of Emitter and
Parametric_Data and contains properties which are the fields of the SO5 record type.
Only one subclass, Assessed Comments, is required to model comment classification for
assessed data objects.

D. THE CONCEPTUAL EWIRDB

The object-oriented schema developed in section C may now be mapped into a
high-level conceptual model. The model used for this representation is the OPERA model
of Chapter IV. The reasons for creating a conceptual model are (1) to provide a simplified
expression of data requirements and relationships for the database end user and (2) to
furnish the producers of the database a model for the conceptual design of the EWIRDB.

Figure 18 is the OPERA representation of the object schema shown in Figures 16
and 17. Recall that individual properties and methods are excluded in order to focus on the
relationships between classes. One feature of the OPERA representation which is not
evident in the object or TERF formats is modeling of constraints. For example, the
OPERA schema clearly shows that an emitter file may be related to many subfile headers
(in fact, it must contain at least one) but a subfile header may be related to many emitter
files (or to none). In the OPERA schema such constraints are inherited by subclasses. For
example, an Observed_Reference_Data object must be related to some Emitter object
but an emitter object may be related from zero to many Observed_Reference Data

objects, since an emitter may be discovered which has no documented references.

79

BUWAYIS VIHJO dAIMA 81 a0y

ERLEREEEY I AR {d]
"ONLANVYVd

vivd
TONLEANY YV
TUHSSHSSV

) vivad
DILTAVEVd
(3AYISEO

VivVd DILINVIVd |

ONLINVAVd

NZWINOD VLVd

viva vivd
HONTYZATY || “FONTFHIATE
Tagdssassvil ~agayasdo

VLVA IDNTIHITT

NOILVOLAISSV1D
“aaAydsdo

4

NOLLVIIJISSVTD

viva
ORLINVAVY
WALLIWNG

SLNAWIOD
~qassassy

1

=1 SINGWWOD Iy

m_2<z m§<z
“agssassv § "aday¥dsdo

HNVN

¥IaviaH
“q144nS
“a3aAyasdo

9

JIAVEH a44Ns

80

Similarly, an Assessed Comments object must be related to at least one Parametric_Daita
object, since a commém cannot exist independently, and may be related to many
Parametric_Data cbjects, as is the case with suffix table comments. As a final example,
note the relationship Emitter Classification. This clearly shows that an emitter file must
have one and only one classification, and that a classification which exists in the database
must be related to some emitter file.

E. GORDAS QUERIES

Using the mapping procedure of Chapter V, a GORDAS schema graph may be
developed from the OPERA schema of Figure 18. This graph, which may be used to write
queries against the EWIRDB, is illustrated in Figure 19.

One of the functions of the suffix code is to determine the possible operating modes
of an emitter. The "++" suffix code indicates that a particular parameter has a value for all
operating modes. Suppose that a requirement exists to retrieve from the EWIRDB the
names of all emitters which have a suffix code of "++" for the parameter scan angle

coverage. This information may be extracted by the following query :

Query 1 : GET Emitter Name of name of EMITTER
WHERE (Suffix_Code of parametric data [of EMITTER] = "++")
AND
(Measurement of parametric_data [of EMITTER] =
“scan angle coverage")

As discussed in Chapter V, the use of brackets ([]) is optional. It is used here for clarity

only.

81

ydesp Land SYQYOO 9qdIMg ‘61 3inJiyg

(Anngeseagay uonespssegy o)y
LLWSI3A] 2P0V V(G
D LANVEVY QHSSHSSY Sd)

v 4AON

t¢ 4dON

13§ Sinugy

B
g 12y dupsuoniejay

(IN"2u) aepdpy” %1 3oy 31y i) VX3] ‘angw A “sadd)
'30[EA 13007 WALIMSEIN' PO T INJQNG PO xijjNg
uonvioN'2mog ‘A1 P03V LYA IMLANYYVA'ST)

81 HAON

(n1ep ownausesed wieg ~ ouanajar)

(V1VU JONHEFIEE VIVA DMIdNVYVA'SY)

t

(@umey “(enuiagag’ 2umos” [Au|
‘() Aemny emaoy:
OIULINVY YV AaAYESHO'sT)

(ANNQqeseaioy apo) onedy Iy

SINBWWOO @assassv'sa)

Viv(l

¢CHAON

(X3 "WURIRDO) IFQUIRN ~ AR]
JAqUIRN TURIIO) WONNON
sasmog'adA] “paoaay:s LNGININCD'SH)

(swiaunnoo ' nep puysuresed)

(SLNGWNIWOD Y1VA DILLINVAVI'SY)

(Anpquswapay'apo)
TUonvY Y LYA
“BINEdAY
“aassassv'sa)

1T 300N

*JAqUIMN "I QU N " 30Ua)Y

(919Q " PARR3Y:NOLLYIIAISS VIO

(UonwJIssv) VEYQ "
“EONdYaday AdAYASHO'SH)
“aaAyasso’sd) 61 GAON
0C 3AON
UONERISTRL)
‘wonmoN‘amog adh | “psesay
oL il *NOLLVDIJISSV1D'SE)

(au)” (oNmpa)
“¥AAVEH FT48NS GAAYISEO'SD)

11 3dON

M&&
S

(VAVA ONLLANVIVd S3LLING'SH)

(RUEN dMang' YN 2u | QNS IPo) INKNS ‘uoninoN

(w1ep~ouargar v “snsarend)

(nep snaure pd smnua)

s

‘2inog xdh 1 ~proday: y3GVAHATIIENS 'S

¢ 4AON -

(33pe3g~apjqus’ TN >

(1mmany wep~smoursed)

Sty] (nnna spesqanqns)
(NFAAVAH ZTHENS HALLING 'S¥)

(4ALLLING ‘SB)

¢ HJON

(ammma’ miren

5

(ANVYN NELLING 'S¥)

L1 9AON onmoN'somog'add | "picosy S1 9aON
YIVA FINTYE43Y'SD
91 4dON (V' vonwipse (o sAu3)
{FIuswwod 1) (- N N — 2:
(NOLLVOMISSYD WaLLING'S¥)
(1' amana'gonesigisep)

(a2~ Ng M (a3uwy e
‘WO LIRS INYN PO HVSAWYN
“aassassv'sa) GdAYASHO'SE)

(SINTWNOD WALLING'SY) (VLVQ 3ONE¥EIAY YALLING'SY L 4dON 9 HAON

a
(Inuwa‘n) (sammd* 0TNN)
(arepd)™otn ‘U Ry
*uognoN 9amog ad | "posy FNVN'SE)

F 1 HAON

(e smynms)

82

Suppose a user of the EWIRDB knows the common name of an electronic emitter,
but requires more specific information. For example, for the SPS-10 surface search radar,
the ELNOT, parametric tree index, suffix table, and intelligence source for all observed

data may be obtained with Query 2 :

Query 2 : GET <Nouation, Tree_Nr, Comments, Intel_Source> of
parametric_data of EMITTER
WHERE Source of parametric_data [of EMITTER] INCLUDES
GET Source of PARAMETRIC DATA
WHERE Source [of PARAMETRIC DATA] = "K"
AND
(Emitter Name of name [of EMITTER] = "SPS-10")
AND
(Line_Number of comments of parametric_data
[of EMITTER] = "C000")

Note how the suffix table is retrieved. Only comments with three trailing zeros belong to a
suffix table; the leading digit specifies whether the source is observed or assessed. Also,
observe the use of the nested query. This is needed to restrict the query to observed
parametric data.

The next query retrieves the subfile names of all emitters with a technical date after

March 3, 1987 and whose references are classified TOP SECRET :

Query 3 : GET Subfile_Name of subfile header of EMITTER
WHERE Source of subfile header [of EMITTER] INCLUDES
GET Source of SUBFILE_HEADER
WHERE Source [of SUBFILE_HEADER] = "K"
AND
(Technical_Date of subfile_header [of EMITTER] > 870303)
AND
(Classification of reference_data of parametric_data
[of EMITTER] = "TOP SECRET")

&3

Query 4 retrieves the names of all emitters whose classification exceeds

CONFIDENTIAL :

Query 4 : GET Emitter Name of name of EMITTER
WHERE Emitter Classification of classification [of EMITTER] =
"SECRET"
OR
Emitter Classification of classification [of EMITTER] =
"TOP SECRET"

Query 4 and Query 1 are similar in form and function. Unlike the other two quenies, there
is no restriction on what subclasses may be queried; emitter names associated with
observed and assessed data sources are returned in the result.

The final query to be examined uses an aggregate function operator to determine

the number of parametric data records with the best preferential rating or confidence level:

Query 5 : GET COUNT of PARAMETRIC DATA
WHERE Source [of PARAMETRIC DATA] INCLUDES
(GET Source of PARAMETRIC DATA
WHERE Source [of PARAMETRIC DATA] = "K"
AND Preferential Rating [of PARAMETRIC DATA] = 6)
OR
(GET Source of PARAMETRIC DATA
WHERE (Source [of PARAMETRIC DATA] ="E")
OR
(Source [of PARAMETRIC DATA] = "U")
AND Confidence Level [of PARAMETRIC DATA] = I)

The two nested queries are used to restrict examination of the preferential rating to those
objects whose source is KILTING , and restrict confidence levels to those found in objects

whose source is S&T1 or USNCSDB.

84

F. CONCLUSION

The EWIRDB is critical to the combat effectiveness of the U.S. Armed Forces. As
the primary database for reprogramming electronic warfare system components, it must
contain correct and timely information to ensure minimal loss of life during conflict. In
peacetime, it is essential for maintaining combat readiness in the areas of tactics and
training.

The EWIRDB, although effectively implemented, is inadequately modeled. In
particular, National Air Intelligence Center (1994) does not contain a conceptual model of
the database, but rather an implementation model. Since the EWIRDB is constantly
evolving , a high-level representation would be useful to make design changes to the
database. In addition, with the advantages object-oniented database management systems
offer, a conceptual object schema would establish a foundation from which to eventually
store the EWIRDB in the form of objects (instead of records). The schemas of Figure 16,
17, and 18 provide this basis.

In order for any database to be useful, it must have a query capability. The
GORDAS query language was chosen because of the natural way the conceptual
EWIRDB schema maps into the query graph, and the ease of query formulation. Other
query languages may be more suitable from a processing viewpoint, but such

consideration is beyond the scope of this paper.

85

VII. CONCLUSIONS AND RECOMMENDATIONS

In this thesis we have proposed a conceptual model, OPERA, which takes an
object-oriented impiementation data model and abstracts it to a level of simplicity
exceeding that of the EER model. With this simplicity comes an improved understanding
of the state and behavioral characteristics of an object-oriented database. We conclude,
based on our examination of the EWIRDB, that such a conceptual refinement can be more
meaningful than a record-based relational description.

Several issues were addressed by this thesis. As a starting point, the EER was
presented as the foundation for proposing an object-oriented conceptual model. Then, a
general data model for an object-oriented database schema was established, the
implementation mode! of Chapter III. We determined that, by modifying the existing EER
model to incorporate database behavior, we could represent the object-oriented model in
an understandable and meaningful way. The result of this was the primary objective of the
thesis : extending the ER model into a high-level graphical representation for the
object-oriented model, called OPERA. In doing this, an intermediate schematic
representation, GOOSE, was used to aid in transformation from an implementation to a
conceptual schema. We also demonstrated the mathematical relation to be a basis for
modeling database behavior in OPERA.

Object-oriented query languages were compared in Chapter V. An extension of the

GORDAS query language, adapted for use with object-oriented schemas, was proposed.

86

By converting an OPERA schema to a GORDAS query graph, we showed how queries
could be formulated which were easier to understand than the same ones in other
object-oriented query languages.

Finally, we applied the OPERA model to a real-world database, the EWIRDB. This
database was determined to be a good candidate for analysis because it is (1) critical to
U.S. Armed Forces combat capability, (2) inadequately modeled on a conceptual level,
and (3) stored in a relational, record-based format. The EWIRDB was successfully
mapped from a relational to an object-oriented schema and converted to an OPERA
diagram. The OPERA schema was shown to be semantically superior to the EWIRDB
record. In particular, superclass/subclass relationships were illustrated which were hidden
in the relational schema. Finally, the OPERA schema was mapped to an object GORDAS
schema graph, and relevant queries were formulated against the EWIRDB.

The OPERA model has some limitations. For example, object versions are not
addressed. This is a very important part of complex database modeling, and should be
incorporated as an enhancement. Another area for future investigation is that of database
constraints. OPERA only models constraints inherent to the EER model; any additional
constraints must be incorporated as methods. For advanced constraints, such as those
required to enforce the invariants of schema evolution, some standard way of representing
these in OPERA is needed. Also, an investigation into alternate object-oriented query
languages, such as those supporting functional data models, would supplement the work

done with GORDAS in this thesis. Also, since the EWIRDB is basically a relational

87

database, OPERA should be used to describe an existing object-oriented database with

complex modeling requirements.

88

LIST OF REFERENCES |

Banerjee, J., and others, "Data Model Issues for Object-Oriented Applications," ACM
Transactions on Olffice Information Systems, v. S, pp. 3-26, January 1987

Banerjee, J., Kim, W, and Kim, K., "Queries in Object-Oriented Databases," Proceedings
of the Fourth International Conference on Data Engineering, pp. 31-38, February 1-5,
1988.

Bertino, E., and others, "Object-Onented Query Languages: The Notion and the Issues,"
IEEE Transactions on Knowledge and Data Engineering, v. 4, pp. 223-237, June 1992.

Bertino, E., and Martino, L., Object-Oriented Database Systems, pp. 12-80,
Addison-Wesley, 1993.

Berzins, V., and Ketabchi, M., "Modeling and Managing CAD Databases," Computer, pp.
93-102, February 1987.

Chen, P., "The Entity-Relationship Model-Toward a Unified View of Data,* 4CM
Transactions on Database Systems, v. 1, pp. 9-36, March 1976.

Dos Santos, C., Neuhold, E., and Furtado, A, "A Data Type Approach to the
Entity-Relationship Model," Proceedings of the First International Conference on
Entity-Relationship Approach, pp. 103-119, December 10-12, 1979.

Elmasri, R., and Wiederhold, G., "GORDAS: a Formal High-Level Query Language for
the Entity-Relationship Model," Proceedings of the Second International Conference on
Entity-Relationship Approach, pp. 49-70, October 12-14, 1981.

Elmasn, R., and Navathe, S., Fundamentals of Database Systems, pp. 23-36, pp.
409-452, Benjamin-Cummings, 1989.

Gorman, K., and Choobineh, J., "An Overview of the Object-Oriented Entity-Relationship
Model (OOERM)," Proceedings of the Twenty-Third Annual Hawaii International
Conference on System Sciences, vol. 3, pp. 336-345, 1990.

Hughes, J., Object-Oriented Databases, pp. 79-119, Prentice-Hall, 1991.

89

Kappel, G, and Schrefl, M., "A Behavior Integrated Entity-Relationship Approach for
the Design of Object-Oriented Databases," Proceedings of the Seventh International
Conference on Entity-Relationship Approach, pp. 311-328, November 16-18, 1988

Kemper, A, and Moerkotte, G , Object-Oriented Database Management: Applications
Engineering and Computer Science, pp. 349-376, Prentice-Hall, 1994

Kim, W, Bertino, E., and Garza, J., "Composite Objects Revisited," Proceedings of the
ACM-SIGMOD International Conference on Management of Data, pp. 337-347.
May/June 1989.

Lazimy, R., "E’R Model and Object-Oriented Representation for Data Management,
Process Modeling, and Decision Support," Proceedings of the Eighth International
Conference on Entity-Relationship Approach, pp. 129-151, October 18-20, 1989

National Air Intelligence Center, Electronic Warfare Integrated Reprogramming
Database (EWIRDB) Guide, vol. 2, pp. 1.1-7.3, April 1994

Navathe, S., and Pillalamarri, M., "OOER: Toward Making the E-R Approach
Object-Oriented," Proceedings of the Seventh International Conference on
Entity-Relationship Approach, pp. 185-206, November 16-18, 1988.

Rosen, K., Discrete Mathematics and Its Applications, pp. 340-407, McGraw-Hill, 1991.

Scheuermann, P., Schiffner, G., and Weber, H., "Abstraction Capabilities and Invariant
Properties Modeling Within the Entity-Relationship Approach.” Proceedings of the First
International Conference on Entity-Relationship Approach, pp. 121-140, December
10-12, 1979.

Smith, J., and Smith, D., "Database Abstractions: Aggregation and Generalization," ACM
Transactions on Database Systems, v. 2, pp. 105-133, June 1977.

Teory, T., Yang, D., and Fry, J., "A Logical Design Methodology for Relational
Databases Using the Extended Entity-Relationship Model," Computing Surveys, v. 18, pp.
197-222, June 1986.

o

INITIAL DISTRIBUTION LIST

. Defense Technical Information Center

Cameron Station
Alexandnia. Virginia 22304-6145

Library, Code 052
Naval Postgraduate School
Monterey, California 93943-5101

Computer Technology, Code 32
Naval Postgraduate School
Monterey, California 93943-5120

C. Thomas Wu, Code CS/Wq
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5118

Craig W. Rasmussen, Code MA/Ra
Department of Mathematics

Naval Postgraduate School
Monterey, California 93943-5216

Ted Lewis, Code CS/Lt
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5118

LT Gerald B. Barnes
25668 Capshaw Road
Athens, Alabama 35611

91

Number of Copies
2

t9

